Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun;18(6):377-84.
doi: 10.1089/dia.2015.0431. Epub 2016 May 16.

Automated Overnight Closed-Loop Control Using a Proportional-Integral-Derivative Algorithm with Insulin Feedback in Children and Adolescents with Type 1 Diabetes at Diabetes Camp

Affiliations

Automated Overnight Closed-Loop Control Using a Proportional-Integral-Derivative Algorithm with Insulin Feedback in Children and Adolescents with Type 1 Diabetes at Diabetes Camp

Trang T Ly et al. Diabetes Technol Ther. 2016 Jun.

Abstract

Objective: This study determined the feasibility and efficacy of an automated proportional-integral-derivative with insulin feedback (PID-IFB) controller in overnight closed-loop (OCL) control of children and adolescents with type 1 diabetes over multiple days in a diabetes camp setting.

Research design and methods: The Medtronic (Northridge, CA) Android™ (Google, Mountain View, CA)-based PID-IFB system consists of the Medtronic Minimed Revel™ 2.0 pump and Enlite™ sensor, a control algorithm residing on an Android phone, a translator, and remote monitoring capabilities. An inpatient study was completed for 16 participants to determine feasibility. For the camp study, subjects with type 1 diabetes were randomized to either OCL or sensor-augmented pump therapy (control conditions) per night for up to 6 nights at diabetes camp.

Results: During the camp study, 21 subjects completed 50 OCL nights and 52 control nights. Based on intention to treat, the median time spent in range, from 70 to 150 mg/dL, was greater during OCL at 66.4% (n = 55) versus 50.6% (n = 52) during the control period (P = 0.004). A per-protocol analysis allowed for assessment of algorithm performance with the median percentage time in range, 70-150 mg/dL, being 75.5% (n = 37) for OCL versus 47.6% (n = 32) for the control period (P < 0.001). There was less time spent in the hypoglycemic ranges <60 mg/dL and <70 mg/dL during OCL compared with the control period (P = 0.003 and P < 0.001, respectively).

Conclusions: The PID-IFB controller is effective in improving time spent in range as well as reducing nocturnal hypoglycemia during the overnight period in children and adolescents with type 1 diabetes in a diabetes camp setting.

PubMed Disclaimer

Publication types