Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 17;17(1):56.
doi: 10.1186/s12931-016-0368-x.

Electronic cigarette exposure triggers neutrophil inflammatory responses

Affiliations

Electronic cigarette exposure triggers neutrophil inflammatory responses

Andrew Higham et al. Respir Res. .

Abstract

Background: The use of electronic cigarettes (e-cigs) is increasing and there is widespread perception that e-cigs are safe. E-cigs contain harmful chemicals; more research is needed to evaluate the safety of e-cig use. Our aim was to investigate the effects of e-cigs on the inflammatory response of human neutrophils.

Methods: Neutrophils were exposed to e-cig vapour extract (ECVE) and the expression of CD11b and CD66b was measured by flow cytometry and MMP-9 and CXCL8 by ELISA. We also measured the activity of neutrophil elastase (NE) and MMP-9, along with the activation of inflammatory signalling pathways. Finally we analysed the biochemical composition of ECVE by ultra-high performance liquid chromatography mass spectrometry.

Results: ECVE caused an increase in the expression of CD11b and CD66b, and increased the release of MMP-9 and CXCL8. Furthermore, there was an increase in NE and MMP-9 activity and an increase in p38 MAPK activation. We also identified several harmful chemicals in ECVE, including known carcinogens.

Conclusions: ECVE causes a pro-inflammatory response from human neutrophils. This raises concerns over the safety of e-cig use.

Keywords: COPD; Electronic cigarettes; Inflammation; MMP-9; Neutrophils; Smoking.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
E-cig induced neutrophil activation. Neutrophils from three healthy subjects were exposed to ECVE (0.001–0.1 OD) for 2, 4 or 6 h (white, grey and black bars respectively). Neutrophils were analysed for CD11b (a) and CD66b (b) expression, and shape change (c) by flow cytometry. Data presented as mean ± SEM where *, ** and *** = significant increase compared to unstimulated control (p < 0.05, p < 0.01, and p < 0.001 respectively)
Fig. 2
Fig. 2
E-cig induced protease and CXCL8 release. Neutrophils from healthy subjects were exposed to ECVE (0.001–0.1 OD) for 6 h and supernatants were analysed for MMP-9 (a) and CXCL8 (d) release by ELISA (n = 10) and NE activity by florescence (e; n = 6). Culture supernatants from healthy subjects (0.003 ECVE) were also analysed for MMP-9 activity by zymography and MMP-9 expression by western blot (representative image; (b)). Western blots were analysed by densitometry (c). Data presented as mean ± SEM where *, ** and *** = significant change compared to unstimulated control (p < 0.05, p < 0.01, and p < 0.001 respectively)
Fig. 3
Fig. 3
E-cig induced cell signalling pathway activation. Neutrophils from five healthy subjects were exposed to ECVE (0.003 and 0.01 OD) for 30 or 60 mins and cell lysates were analysed for a phospho-p38 MAPK, b phospho-ERK and c phospho-p65. All blots were analysed by densitometry and any changes were relative to total p38 MAPK. Data presented as mean ± SEM where * = significant increase compared to unstimulated control (p < 0.05)
Fig. 4
Fig. 4
Inhibition of e-cig induced MMP-9 release. Neutrophils from six healthy subjects were pre-incubated with dexamethasone (dex; 1 μM), selumetinib (Sel; 1 μM) or BIRB-796 (1 μM) for 1 h prior to ECVE (0.003) exposure for 6 h. Supernatants were analysed for MMP-9 by ELISA. Data presented as mean ± SEM where * = significant increase compared to unstimulated control (p < 0.05)
Fig. 5
Fig. 5
E-cig induced MMP-9 release; brand comparisons. Neutrophils from ten healthy subjects were exposed to brand 1 (0 or 24 mg; (a and d)), brand 2 (0 or 24 mg; (b and e)), brand 3 (16 mg; (c)), or CSE (f) for 6 h. Supernatants were analysed for MMP-9 by ELISA. Data presented as mean ± SEM where *, ** and *** = significant increase compared to unstimulated control (p < 0.05, p < 0.01, and p < 0.001 respectively)
Fig. 6
Fig. 6
E-cig induced CXCL8 release; brand comparisons. Neutrophils from ten healthy subjects were exposed to brand 1 (0 or 24 mg; (a and d)), brand 2 (0 or 24 mg; (b and e)), brand 3 (16 mg; (c)), or CSE (f) for 6 h. Supernatants were analysed for CXCL8 by ELISA. Data presented as mean ± SEM where *, ** and *** = significant increase compared to unstimulated control (p < 0.05, p < 0.01, and p < 0.001 respectively)
Fig. 7
Fig. 7
Acrolein induced MMP-9 release. Neutrophils from six healthy subjects were exposed to acrolein (0.1–1 μM) for 6 h. Supernatants were analysed for MMP-9 by ELISA. Data presented as mean ± SEM where * = significant increase compared to unstimulated control (p < 0.05)

References

    1. Euromonitor International: Vapor devices and e-Cigarettes in the Global Tobacoo Market. 2015. http://blog.euromonitor.com/2015/06/vapor-devices-and-e-cigarettes-in-th.... Accessed 1 Sept 2015.
    1. Etter J-F, Bullen C. Electronic cigarette: users profile, utilization, satisfaction and perceived efficacy. Addiction. 2011;106:2017–2028. doi: 10.1111/j.1360-0443.2011.03505.x. - DOI - PubMed
    1. Summary of results: laboratory analysis of electronic cigarettes conducted By FDA [http://www.fda.gov/NewsEvents/PublicHealthFocus/ucm173146.htm]. Accessed 1 Sept 2015.
    1. Trehy ML, Ye W, Hadwiger ME, Moore TW, Allgire JF, Woodruff JT, Ahadi SS, Black JC, Westenberger BJ. Analysis of electronic cigarette cartridges, refill solutions, and smoke for nicotine and nicotine related impurities. J Liq Chromatogr Relat Technol. 2011;34:1442–1458. doi: 10.1080/10826076.2011.572213. - DOI
    1. Jensen RP, Luo W, Pankow JF, Strongin RM, Peyton DH. Hidden formaldehyde in e-cigarette aerosols. N Engl J Med. 2015;372:392–394. doi: 10.1056/NEJMc1413069. - DOI - PubMed

MeSH terms