Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 17:6:26071.
doi: 10.1038/srep26071.

Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide

Affiliations

Inhibiting complex IL-17A and IL-17RA interactions with a linear peptide

Shenping Liu et al. Sci Rep. .

Abstract

IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. The N-terminal portions of HAP form a β-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. This mode of inhibition suggests opportunities for developing peptide antagonists against this challenging target.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Binding of HAP to IL-17A and inhibition of IL-17A/IL-17RA are measured by SPR, FRET and cell-based assays.
(A) Typical SPR sensorgrams (black) of HAP at indicated concentrations binding to biotinylated human IL-17A immobilized on a streptavidin chip surface, fitted with single site binding model curves (red). Kinetic parameters (ka, kd) were obtained by a global fit using three concentrations in triplicate. KD determined by the standard equation, KD = kd/ka. (B) HAP inhibits SPR signaling of IL-17A binding to immobilized IL-17RA. Data are mean and error bars of +/− standard deviation of three measurements. (C) Inhibition of IL-17A and IL-17RA binding by HAP measured by FRET assay. Data are mean and error bars of +/− standard deviation from 299 experiments, each performed in duplicate. (D) Example of HAP selective inhibition of the production of IL-8 (triangles), IL-6 (squares) and CCL-20 (circles) by primary human keratinocyte cells synergistically stimulated by 100 ng/ml IL-17A and 10 ng/ml TNF-α. HAP does not inhibit the baseline production of IL-6, IL-8 and CCL-20 stimulated by 10 ng/ml TNF-α alone (gray lines and symbols). Data are mean and error bars of +/− standard deviation of duplicated experiments.
Figure 2
Figure 2. Overall structure of the Fab/IL-17A/HAP complex in ribbon presentation.
For clarity, different molecules are colored differently. Two HAP molecules are colored blue and red, and IL-17A monomers are colored ice blue and pink, respectively. Picture prepared using program CCP4MG. (A) Overview of the distinct binding sites of Fab and HAP to IL-17A. (B) Close-in view of the IL-17A/HAP structure. IL-17A β-strands are labelled. Each of the two bound HAP interacts with both monomers of the IL-17A dimer. (C) As a comparison, the IL-17A/IL-17RA complex was shown with IL-17A in the same orientation. Three distinct areas IL-17A/IL-17RA interface are labeled.
Figure 3
Figure 3. Mechanism of the inhibition of the IL-17A/IL-17RA interaction by HAP.
(A) HAP binds at region I of IL-17A. IL-17A dimer is in surface presentation (β-strands 0 shown as ribbons for clarity). Polar interactions are shown in dashes. HAP residues as well as key IL-17A residues are labeled. For clarity, a few HAP residues are also shown in stick model with carbon atoms colored green, oxygen in red and nitrogen in blue. (B) I-17RA (ribbon in gold) peptide Leu27-Ile32 binds to the same area as the HAP α-helix. Trp31 of IL-17RA binds to the same pocket in IL-17A as Trp12 of HAP. (C) As illustrated by overlay a single HAP molecule and β-strands 0 (grey) of the IL-17A/HAP complex in the apo IL-17A structure, conformational changes in region I of IL-17A are needed for binding of both the β-stand and α-helix of the HAP. Notice that the Trp binding pocket for W12 of HAP or W31 of IL-17RA is missing in the apo structure.

Similar articles

Cited by

References

    1. Gaffen S. L. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol 9, 556–567, doi: 10.1038/nri2586 (2009). - DOI - PMC - PubMed
    1. Cua D. J. & Tato C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol 10, 479–489 (2010). - PubMed
    1. Toy D. et al. Cutting Edge: Interleukin 17 Signals through a Heteromeric Receptor Complex. J Immunol. 177, 36–39, doi: 10.4049/jimmunol.177.1.36 (2006). - DOI - PubMed
    1. Onishi R. M. & Gaffen S. L. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 129, 311–321, doi: 10.1111/j.1365-2567.2009.03240.x (2010). - DOI - PMC - PubMed
    1. Hwang S. Y. et al. IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther 6, R120–128, doi: 10.1186/ar1038 (2004). - DOI - PMC - PubMed