Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov;18(11):1096-103.
doi: 10.1080/15226514.2016.1183580.

Experimental and theoretical approaches for Cd(II) biosorption from aqueous solution using Oryza sativa biomass

Affiliations

Experimental and theoretical approaches for Cd(II) biosorption from aqueous solution using Oryza sativa biomass

Manal Fawzy et al. Int J Phytoremediation. 2016 Nov.

Abstract

Biomass of Oryza sativa (OS) was tested for the removal of Cd(II) ions from synthetic and real wastewater samples. Batch experiments were conducted to investigate the effects of operating parameters on Cd(II) biosorption. Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive x-ray spectroscopy were used to examine the surface characteristics of the Cd(II)-loaded biomass. The maximum removal efficiency of Cd(II) was 89.4% at optimum pH 6.0, biosorbent dose 10.0 g L(-1), initial Cd(II) 50 mg L(-1), and biosorbent particle size 0.5 mm. The applicability of Langmuir and Freundlich isotherms to the sorbent system implied the existence of both monolayer and heterogeneous surface conditions. Kinetic studies revealed that the adsorption process of Cd(II) followed the pseudo-second-order model (r2: 0.99). On the theoretical side, an adaptive neuro-fuzzy inference system (ANFIS) was applied to select the operating parameter that mostly influences the Cd(II) biosorption process. Results from ANFIS indicated that pH was the most influential parameter affecting Cd(II) removal efficiency, indicating that the biomass of OS was strongly pH sensitive. Finally, the biomass was confirmed to adsorb Cd(II) from real wastewater samples with removal efficiency close to 100%. However, feasibility studies of such systems on a large-scale application remain to be investigated.

Keywords: Artificial modeling; Cd(II) biosorption; synthetic and real wastewater.

PubMed Disclaimer

LinkOut - more resources