DNA methylation and genetic polymorphisms of the Leptin gene interact to influence lung function outcomes and asthma at 18 years of age
- PMID: 27186323
- PMCID: PMC4858611
DNA methylation and genetic polymorphisms of the Leptin gene interact to influence lung function outcomes and asthma at 18 years of age
Abstract
The leptin gene (LEP) plays a regulatory role in satiety, inflammation, and allergy. Prior findings linking leptin to asthma motivated us to investigate whether DNA methylation (DNA-M) of CpG (cytosine-phosphate-guanine) sites in concert with single nucleotide polymorphisms (SNPs) of LEP can explain the risk of asthma and lung function. Methylation of CpG sites was assessed using the Illumina Infinium Human Methylation 450 beadchip in blood samples collected from 10- and 18-year-old boys and girls from the Isle of Wight (IOW) birth cohort (UK). Four LEP SNPs were genotyped. Linear and log linear models were used for the analysis, adjusting for false discovery rate (FDR). The analyses were repeated in the BAMSE cohort (Sweden). In the IOW study, the interaction of cg00666422 and rs11763517 (CT vs TT and CC) was associated with FEV1 (FDR-adjusted p-value: 0.03), FEV1/FVC ratio (FDR-adjusted p-value: 0.0096), and FEF25-75% (FDR-adjusted p-value: 0.00048) such that they decreased with increasing DNA-M. The interaction of the same CpG-SNP pair was also associated with increased risk of asthma at age 18. We replicated the findings for FEV1/FVC and FEF25-75% in a smaller sample of 34 participants at age 10. Regarding the BAMSE cohort, although, the interaction of cg00666422 and rs11763517 on lung function were not significant, the direction of the effect was the same as in IOW cohort. Thus, penetrance of LEP genotype seems to be modified by methylation at cg00666422 and is linked to airway obstruction and asthma.
Keywords: CpGs; Epigenetics; FEF25-75%; FEV1; FEV1/FVC ratio; SNPs; asthma; spirometry.
Figures
References
-
- Zhou E, Fu Y, Wei Z, Yang Z. Inhibition of allergic airway inflammation through the blockage of NF-kappaB activation by ellagic acid in an ovalbumin-induced mouse asthma model. Food Funct. 2014;5:2106–2112. - PubMed
-
- Holloway JW, Koppelman GH. Identifying novel genes contributing to asthma pathogenesis. Curr Opin Allergy Clin Immunol. 2007;7:69–74. - PubMed
-
- Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. J Leukoc Biol. 2000;68:437–446. - PubMed
-
- Bruno A, Pace E, Chanez P, Gras D, Vachier I, Chiappara G, La Guardia M, Gerbino S, Profita M, Gjomarkaj M. Leptin and leptin receptor expression in asthma. J Allergy Clin Immunol. 2009;124:230–237. 237.e231–234. - PubMed
-
- Shore SA, Schwartzman IN, Mellema MS, Flynt L, Imrich A, Johnston RA. Effect of leptin on allergic airway responses in mice. J Allergy Clin Immunol. 2005;115:103–109. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous