Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 May;256(5 Pt 1):C994-1003.
doi: 10.1152/ajpcell.1989.256.5.C994.

Role of chloride in potassium transport through a K-Cl cotransport system in human red blood cells

Affiliations

Role of chloride in potassium transport through a K-Cl cotransport system in human red blood cells

C Brugnara et al. Am J Physiol. 1989 May.

Abstract

In this paper, we report experiments demonstrating the coupling of Cl and K movements in a volume-dependent K-Cl cotransport system in human red blood cells. We show that an outwardly directed Cl gradient can promote net K efflux against an inwardly directed K gradient at constant membrane potential. Red blood cell membrane potential was kept constant by using anions that are not transported through the K-Cl cotransport system but that are more permeable than Cl (NO3 and SCN). Under these conditions, when the activities of band 3 (capnophorin)-mediated anion exchange and of the carbonic anhydrase have been inhibited, it is possible to maintain a Cl gradient at constant membrane potential. Similar data were obtained in human red blood cells (least dense fraction from normal subjects and whole blood from patients with homozygous hemoglobin S disease), in rabbit red blood cells, and in low-K sheep red blood cells. These data confirm that the volume-dependent Cl-dependent K movement in these cells operates through coupled K-Cl cotransport.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources