Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jun;43(3):266-75.
doi: 10.1007/s13744-014-0212-2. Epub 2014 Apr 11.

Molecular Characterization and In Silico Analysis of the Pheromone-Binding Protein of the European Grapevine Moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae)

Affiliations

Molecular Characterization and In Silico Analysis of the Pheromone-Binding Protein of the European Grapevine Moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae)

A Mutis et al. Neotrop Entomol. 2014 Jun.

Abstract

The European grapevine moth Lobesia botrana (Denis & Schiffermüller) is an economically important insect in Europe. The species invaded vineyards in Chile, Argentina, and California during 2008-2010 causing severe problems. A major component of the sex pheromone, (E,Z)-7,9-dodecadienyl acetate (E7,Z9-12:Ac), is used in a mating disruption technique when grapevine moth populations are low or to monitor pest numbers. It is thought that these sexual pheromones are blends of volatiles that typically are specific to a species and are transported in the insect antenna by pheromone-binding proteins (PBPs) across the sensillar lymph to the olfactory receptors. Currently, an increasing number of Lepidopteran PBPs are being identified and cloned. However, there are no studies of the olfactory system and of proteins involved in the olfactory perception of L. botrana at the molecular level. In the present study, we report, for the first time, the sequence of a PBP from L. botrana (LbotPBP), which was determined using reverse transcription technology. Homology modeling was used to generate the three-dimensional protein structure. The model suggests that PBP consists of six α-helices as follows: Lys2-Met23 (α1), Thr28-Phe36 (α2), Arg46-Leu59 (α3), His70-Asn80 (α4), Glu84-Asn100 (α5), and Cys108-Lys125 (α6), held together by three disulfide bridges, Cys19-Cys54, Cys50-Cys108, and Cys97-Cys117. Docking simulations based on this model suggested that Trp114 is a key residue in the recognition of acetate pheromones, such as E7,Z9-12:Ac. In silico results in this study are consistent with previous findings in which E7,Z9-12:Ac acts as the most active compound in behavioral and electroantennographic assays.

Keywords: (E,Z)-7,9-dodecadienyl acetate; Acetate binding site; molecular docking; molecular modeling; pheromone-binding protein.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Chem Ecol. 2010 Dec;36(12):1293-305 - PubMed
    1. J Mol Biol. 2009 Jul 31;390(5):981-90 - PubMed
    1. PLoS One. 2013;8(1):e55132 - PubMed
    1. Int J Biol Sci. 2012;8(7):979-91 - PubMed
    1. Genome Res. 2002 Sep;12(9):1357-69 - PubMed

LinkOut - more resources