Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Feb 21;28(4):1718-25.
doi: 10.1021/bi00430a044.

Selective labeling of the erythrocyte hexose carrier with a maleimide derivative of glucosamine: relationship of an exofacial sulfhydryl to carrier conformation and structure

Affiliations

Selective labeling of the erythrocyte hexose carrier with a maleimide derivative of glucosamine: relationship of an exofacial sulfhydryl to carrier conformation and structure

J M May. Biochemistry. .

Abstract

Sulfhydryl-reactive derivatives of glucosamine were synthesized as potentially transportable affinity labels of the human erythrocyte hexose carrier. N-Maleoylglycyl derivatives of either 6- or 2-amino-2-deoxy-D-glucopyranose were the most potent inhibitors of 3-O-methylglucose uptake, with concentrations of half-maximal irreversible inhibition of about 1 mM. Surprisingly, these derivatives were very poorly transported into erythrocytes. They reacted rather with an exofacial sulfhydryl on the carrier following a reversible binding step, the latter possibly to the exofacial substrate binding site. However, their reactivity was determined primarily by access to the exofacial sulfhydryl, which, as predicted by the one-site model of transport, required a carrier conformation with the exofacial substrate binding site exposed. Once reacted, the carrier was "locked" in a conformation unable to reorient inwardly and bind cytochalasin B. In intact erythrocytes the N-maleoylglycyl derivative of 2-[3H]glucosamine labeled predominantly an Mr 45,000-66,000 protein on gel electrophoresis in a quantitative and cytochalasin B inhibitable fashion. By use of changes in carrier conformation induced by competitive transport inhibitors in a "double" differential labeling method, virtually complete selectivity of labeling of the carrier protein was achieved, the latter permitting localization of the reactive exofacial sulfhydryl to an Mr 18,000-20,000 tryptic fragment of the carrier.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources