TarPmiR: a new approach for microRNA target site prediction
- PMID: 27207945
- PMCID: PMC5018371
- DOI: 10.1093/bioinformatics/btw318
TarPmiR: a new approach for microRNA target site prediction
Abstract
Motivation: The identification of microRNA (miRNA) target sites is fundamentally important for studying gene regulation. There are dozens of computational methods available for miRNA target site prediction. Despite their existence, we still cannot reliably identify miRNA target sites, partially due to our limited understanding of the characteristics of miRNA target sites. The recently published CLASH (crosslinking ligation and sequencing of hybrids) data provide an unprecedented opportunity to study the characteristics of miRNA target sites and improve miRNA target site prediction methods.
Results: Applying four different machine learning approaches to the CLASH data, we identified seven new features of miRNA target sites. Combining these new features with those commonly used by existing miRNA target prediction algorithms, we developed an approach called TarPmiR for miRNA target site prediction. Testing on two human and one mouse non-CLASH datasets, we showed that TarPmiR predicted more than 74.2% of true miRNA target sites in each dataset. Compared with three existing approaches, we demonstrated that TarPmiR is superior to these existing approaches in terms of better recall and better precision.
Availability and implementation: The TarPmiR software is freely available at http://hulab.ucf.edu/research/projects/miRNA/TarPmiR/ CONTACTS: haihu@cs.ucf.edu or xiaoman@mail.ucf.edu
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2016. Published by Oxford University Press.
Figures
Similar articles
-
Improving miRNA Target Prediction Using CLASH Data.Methods Mol Biol. 2019;1970:75-83. doi: 10.1007/978-1-4939-9207-2_6. Methods Mol Biol. 2019. PMID: 30963489
-
MicroRNA modules prefer to bind weak and unconventional target sites.Bioinformatics. 2015 May 1;31(9):1366-74. doi: 10.1093/bioinformatics/btu833. Epub 2014 Dec 18. Bioinformatics. 2015. PMID: 25527098 Free PMC article.
-
Position-wise binding preference is important for miRNA target site prediction.Bioinformatics. 2020 Jun 1;36(12):3680-3686. doi: 10.1093/bioinformatics/btaa195. Bioinformatics. 2020. PMID: 32186709 Free PMC article.
-
Computational annotation of miRNA transcription start sites.Brief Bioinform. 2021 Jan 18;22(1):380-392. doi: 10.1093/bib/bbz178. Brief Bioinform. 2021. PMID: 32003428 Free PMC article. Review.
-
Prediction of miRNA targets.Methods Mol Biol. 2015;1269:207-29. doi: 10.1007/978-1-4939-2291-8_13. Methods Mol Biol. 2015. PMID: 25577381 Review.
Cited by
-
Precision machine learning to understand micro-RNA regulation in neurodegenerative diseases.Front Mol Neurosci. 2022 Sep 9;15:914830. doi: 10.3389/fnmol.2022.914830. eCollection 2022. Front Mol Neurosci. 2022. PMID: 36157078 Free PMC article. Review.
-
circRNA-sponging: a pipeline for extensive analysis of circRNA expression and their role in miRNA sponging.bioRxiv [Preprint]. 2023 Jun 23:2023.01.19.524495. doi: 10.1101/2023.01.19.524495. bioRxiv. 2023. Update in: Bioinform Adv. 2023 Jul 08;3(1):vbad093. doi: 10.1093/bioadv/vbad093. PMID: 36789427 Free PMC article. Updated. Preprint.
-
Applications of Machine Learning in miRNA Discovery and Target Prediction.Curr Genomics. 2019 Dec;20(8):537-544. doi: 10.2174/1389202921666200106111813. Curr Genomics. 2019. PMID: 32581642 Free PMC article. Review.
-
Machine Learning Based Methods and Best Practices of microRNA-Target Prediction and Validation.Adv Exp Med Biol. 2022;1385:109-131. doi: 10.1007/978-3-031-08356-3_4. Adv Exp Med Biol. 2022. PMID: 36352212
-
Translational control in cortical development.Front Neuroanat. 2023 Jan 9;16:1087949. doi: 10.3389/fnana.2022.1087949. eCollection 2022. Front Neuroanat. 2023. PMID: 36699134 Free PMC article.
References
-
- Bandyopadhyay S., Mitra R. (2009) TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples. Bioinformatics, 25, 2625–2631. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources