Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Apr;11(4):563-5.
doi: 10.4103/1673-5374.180737.

Multi-watt near-infrared light therapy as a neuroregenerative treatment for traumatic brain injury

Affiliations

Multi-watt near-infrared light therapy as a neuroregenerative treatment for traumatic brain injury

Theodore A Henderson. Neural Regen Res. 2016 Apr.
No abstract available

PubMed Disclaimer

Figures

Figure 1
Figure 1
Hypothesized mechanism of action of near-infrared light therapy (NILT). Near infrared light (600-980 nm) penetrates tissue and a fraction of the photonic energy reaches the mitochondria. The light of particular wavelengths is absorbed by cytochrome C oxidase and activates increased ATP production, increased production of reactive oxygen species (ROS), reactive nitrogen species (RNS), and possibly increases nitric oxide (Chung et al., 2012; Henderson and Morries, 2015). Downstream events include increased early response genes – c-fos, c-jun and activation of nuclear factor kappa B (NF-κB), which in turn induces increased transcription of gene products leading to synaptogenesis, neurogenesis, and increased production of inflammatory mediators and growth factors (Henderson and Morries, 2015a). Clinically, this results in decreased symptoms of headache, cognitive impairment, sleep disturbance, anxiety, and depression (Morries et al., 2015). Functional neuroimaging demonstrates increased cortical function. The case illustrated is of a patient with a 30 year old moderate traumatic brain injury (TBI). Shown is the contralateral hemisphere with marked diffuse hypoperfusion indicating widespread dysfunction. Following a course of NILT, the patient had demonstrable clinical improvement and significantly improved cerebral perfusion/function (Henderson and Morries, 2015b). SPECT scan data was processed and a map of statistically significant differences from a normative database was generated using the Oasis software by Segami, Inc. The color scale indicates gray for areas that do not differ significantly from the normative database. In contrast, areas of green, light blue, and dark blue represent areas of more than 2, 3, and 4 SD below the mean perfusion of the normative database, respectively. Statistically significant increases in perfusion are illustrated in the red color scale not seen in this patient's brain map.

Similar articles

Cited by

References

    1. Castano AP, Dai T, Yaroslavsky I, Cohen R, Apruzzese WA, Smotrich MH, Hamblin MR. Low-level laser therapy for zymosan-induced arthritis in rats: Importance of illumination time. Lasers Surg Med. 2007;39:543–550. - PMC - PubMed
    1. Chen AC, Arany PR, Huang YY, Tomkinson EM, Sharma SK, Kharkwal GB, Saleem T, Mooney D, Yull FE, Blackwell TS, Hamblin MR. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011;6:e22453. - PMC - PubMed
    1. Chung H, Dai T, Sharma SK, Huang YY, Carroll JD, Hamblin MR. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40:516–533. - PMC - PubMed
    1. Esnouf A, Wright PA, Moore JC, Ahmed S. Depth of penetration of an 850nm wavelength low level laser in human skin. Acupunct Electrother Res. 2007;32:81–86. - PubMed
    1. Fitzgerald M, Hodgetts S, Van Den Heuvel C, Natoli R, Hart NS, Valter K, Harvey AR, Vink R, Provis J, Dunlop SA. Red/near-infrared irradiation therapy for treatment of central nervous system injuries and disorders. Rev Neurosci. 2013;24:205–226. - PubMed