A cascade model of information processing and encoding for retinal prosthesis
- PMID: 27212929
- PMCID: PMC4870925
- DOI: 10.4103/1673-5374.180752
A cascade model of information processing and encoding for retinal prosthesis
Abstract
Retinal prosthesis offers a potential treatment for individuals suffering from photoreceptor degeneration diseases. Establishing biological retinal models and simulating how the biological retina convert incoming light signal into spike trains that can be properly decoded by the brain is a key issue. Some retinal models have been presented, ranking from structural models inspired by the layered architecture to functional models originated from a set of specific physiological phenomena. However, Most of these focus on stimulus image compression, edge detection and reconstruction, but do not generate spike trains corresponding to visual image. In this study, based on state-of-the-art retinal physiological mechanism, including effective visual information extraction, static nonlinear rectification of biological systems and neurons Poisson coding, a cascade model of the retina including the out plexiform layer for information processing and the inner plexiform layer for information encoding was brought forward, which integrates both anatomic connections and functional computations of retina. Using MATLAB software, spike trains corresponding to stimulus image were numerically computed by four steps: linear spatiotemporal filtering, static nonlinear rectification, radial sampling and then Poisson spike generation. The simulated results suggested that such a cascade model could recreate visual information processing and encoding functionalities of the retina, which is helpful in developing artificial retina for the retinally blind.
Keywords: NSFC grants; Poisson spike generation; contrast gain control; firing rate; linear spatiotemporal filter; nerve regeneration; neural regeneration; photoreceptor degeneration; retinal prosthesis; spike trains; static non-linear rectification; synaptic transmission.
Conflict of interest statement
Figures






Similar articles
-
Study of a retinal layer model to generate a spike waveform for a color deficient and strabismus individual.Biomed Tech (Berl). 2019 May 27;64(3):285-295. doi: 10.1515/bmt-2017-0153. Biomed Tech (Berl). 2019. PMID: 30055095
-
Decoding visual information from a population of retinal ganglion cells.J Neurophysiol. 1997 Nov;78(5):2336-50. doi: 10.1152/jn.1997.78.5.2336. J Neurophysiol. 1997. PMID: 9356386
-
Information transmission rates of cat retinal ganglion cells.J Neurophysiol. 2004 Mar;91(3):1217-29. doi: 10.1152/jn.00796.2003. Epub 2003 Nov 5. J Neurophysiol. 2004. PMID: 14602836 Free PMC article.
-
Information processing in the primate retina: circuitry and coding.Annu Rev Neurosci. 2007;30:1-30. doi: 10.1146/annurev.neuro.30.051606.094252. Annu Rev Neurosci. 2007. PMID: 17335403 Review.
-
Learning retina implants with epiretinal contacts.Ophthalmic Res. 1997;29(5):281-9. doi: 10.1159/000268026. Ophthalmic Res. 1997. PMID: 9323719 Review.
Cited by
-
Normative theory of visual receptive fields.Heliyon. 2021 Jan 21;7(1):e05897. doi: 10.1016/j.heliyon.2021.e05897. eCollection 2021 Jan. Heliyon. 2021. PMID: 33521348 Free PMC article.
-
Covariance properties under natural image transformations for the generalised Gaussian derivative model for visual receptive fields.Front Comput Neurosci. 2023 Jun 15;17:1189949. doi: 10.3389/fncom.2023.1189949. eCollection 2023. Front Comput Neurosci. 2023. PMID: 37398936 Free PMC article.
-
Orientation selectivity properties for the affine Gaussian derivative and the affine Gabor models for visual receptive fields.J Comput Neurosci. 2025 Mar;53(1):61-98. doi: 10.1007/s10827-024-00888-w. Epub 2025 Jan 29. J Comput Neurosci. 2025. PMID: 39878929 Free PMC article.
-
Do the receptive fields in the primary visual cortex span a variability over the degree of elongation of the receptive fields?J Comput Neurosci. 2025 Jun 20. doi: 10.1007/s10827-025-00907-4. Online ahead of print. J Comput Neurosci. 2025. PMID: 40540232
-
Relationships between the degrees of freedom in the affine Gaussian derivative model for visual receptive fields and 2-D affine image transformations with application to covariance properties of simple cells in the primary visual cortex.Biol Cybern. 2025 Jun 18;119(2-3):15. doi: 10.1007/s00422-025-01014-4. Biol Cybern. 2025. PMID: 40531345 Free PMC article.
References
-
- Bálya D, Roska B, Roska T. A CNN framework for modeling parallel processing in a mammalian retina. Int J Circ Theor App. 2002;30:363–393.
-
- Berry MJ, Brivanlou IH, Jordan TA. Anticipation of moving stimuli by the retina. Nature. 1999;398:334–338. - PubMed
-
- Chen AH, Zhou Y, Gong HQ. Luminance adaptation increased the contrast sensitivity of retinal ganglion cells. Neuroreport. 2005;16:371–375. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources