The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes
- PMID: 27213518
- PMCID: PMC4909396
- DOI: 10.7554/eLife.15887
The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes
Abstract
Impaired homeostasis of lysosomal Ca(2+) causes lysosome dysfunction and lysosomal storage diseases (LSDs), but the mechanisms by which lysosomes acquire and refill Ca(2+) are not known. We developed a physiological assay to monitor lysosomal Ca(2+) store refilling using specific activators of lysosomal Ca(2+) channels to repeatedly induce lysosomal Ca(2+) release. In contrast to the prevailing view that lysosomal acidification drives Ca(2+) into the lysosome, inhibiting the V-ATPase H(+) pump did not prevent Ca(2+) refilling. Instead, pharmacological depletion or chelation of Endoplasmic Reticulum (ER) Ca(2+) prevented lysosomal Ca(2+) stores from refilling. More specifically, antagonists of ER IP3 receptors (IP3Rs) rapidly and completely blocked Ca(2+) refilling of lysosomes, but not in cells lacking IP3Rs. Furthermore, reducing ER Ca(2+) or blocking IP3Rs caused a dramatic LSD-like lysosome storage phenotype. By closely apposing each other, the ER may serve as a direct and primary source of Ca(2+)for the lysosome.
Keywords: ER; calcium; cell biology; lysosome; mouse; neuroscience.
Conflict of interest statement
The authors declare that no competing interests exist.
Figures
References
-
- Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, Levine TP, Tomasetto C. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. Journal of Cell Science. 2013;126:5500–5512. doi: 10.1242/jcs.139295. - DOI - PubMed
-
- Appelqvist H, Johansson AC, Linderoth E, Johansson U, Antonsson B, Steinfeld R, Kågedal K, Ollinger K. Lysosome-mediated apoptosis is associated with cathepsin D-specific processing of bid at Phe24, Trp48, and Phe183. Annals of Clinical and Laboratory Science. 2012;42:231–242. - PubMed
-
- Berg TO, Strømhaug E, Løvdal T, Seglen O, Berg T. Use of glycyl-L-phenylalanine 2-naphthylamide, a lysosome-disrupting cathepsin C substrate, to distinguish between lysosomes and prelysosomal endocytic vacuoles. The Biochemical Journal. 1994;300(Pt 1):229–236. doi: 10.1042/bj3000229. - DOI - PMC - PubMed
-
- Cai X, Xu Y, Cheung AK, Tomlinson RC, Alcázar-Román A, Murphy L, Billich A, Zhang B, Feng Y, Klumpp M, Rondeau JM, Fazal AN, Wilson CJ, Myer V, Joberty G, Bouwmeester T, Labow MA, Finan PM, Porter JA, Ploegh HL, Baird D, De Camilli P, Tallarico JA, Huang Q. PIKfyve, a class III PI kinase, is the target of the small molecular IL-12/IL-23 inhibitor apilimod and a player in Toll-like receptor signaling. Chemistry & Biology. 2013;20:912–921. doi: 10.1016/j.chembiol.2013.05.010. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous
