Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jul 7;14(25):5894-913.
doi: 10.1039/c6ob00878j. Epub 2016 May 24.

Total synthesis, biosynthesis and biological profiles of clavine alkaloids

Affiliations
Review

Total synthesis, biosynthesis and biological profiles of clavine alkaloids

Stephanie R McCabe et al. Org Biomol Chem. .

Abstract

This review highlights noteworthy synthetic and biological aspects of the clavine subfamily of ergot alkaloids. Recent biosynthetic insights have laid the groundwork for a better understanding of the diverse biological pathways leading to these indole derivatives. Ergot alkaloids were among the first fungal-derived natural products identified, inspiring pharmaceutical applications in CNS disorders, migraine, infective diseases, and cancer. Pergolide, for example, is a semi-synthetic clavine alkaloid that has been used to treat Parkinson's disease. Synthetic activities have been particularly valuable to facilitate access to rare members of the Clavine family and empower medicinal chemistry research. Improved molecular target identification tools and a better understanding of signaling pathways can now be deployed to further extend the biological and medical utility of Clavine alkaloids.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Early biosynthetic pathway steps and diverted ‘shunt’ products
Figure 2
Figure 2
Late biosynthetic pathway steps and diverted ‘shunt’ pathways
Figure 3
Figure 3
Classification of tricyclic, tetracyclic and rearranged clavine alkaloids
Figure 4
Figure 4
Retrosynthetic analysis of Stoltz’s approach to (−)-aurantioclavine (2)
Figure 5
Figure 5
Retrosynthetic analysis of Ishikura’s approach to (±)-aurantioclavine (2)
Figure 6
Figure 6
Retrosynthetic analysis of Ellman’s approach to (−)-aurantioclavine (2).
Figure 7
Figure 7
Retrosynthetic analysis of Takemoto’s approach to (−)-aurantioclavine (2).
Figure 8
Figure 8
Retrosynthetic analysis of Yang’s approach to (−)-aurantioclavine (2).
Figure 9
Figure 9
Retrosynthetic analysis of Murakami’s approach to (−)-cis and (−)-trans clavicipitic acid (1).
Figure 10
Figure 10
Retrosynthetic analysis of Shibata’s approach to (−)-cis-clavicipitic acid (1b).
Figure 11
Figure 11
Mannich mechanism for interconversion of rugulovasines A (11a) and B (11b)
Figure 12
Figure 12
Retrosynthetic analysis of Martin’s approach to rugulovasines A (11a) and B (11b) based on an intermolecular Mannich strategy
Figure 13
Figure 13
Second retrosynthetic analysis of Martin’s approach to rugulovasines A (11a) and B (11b) based on an intramolecular Mannich strategy
Figure 14
Figure 14
Retrosynthetic analysis of Jia’s approach to rugulovasine A (11a)
Figure 15
Figure 15
Retrosynthetic analysis of Szántay’s approach to cycloclavine (26)
Figure 16
Figure 16
Retrosynthetic analysis of Wipf’s approach to cycloclavine (26)
Figure 17
Figure 17
Retrosynthesis of Brewer’s approach to cycloclavine (26)
Figure 18
Figure 18
Retrosynthetic analysis of Cao’s formal synthesis of cycloclavine (26)
Figure 19
Figure 19
Retrosynthetic analysis of Opatz’s formal synthesis of cycloclavine (26)
Figure 20
Figure 20
Biologically active clavine alkaloids
Scheme 1
Scheme 1
(−)-Aurantioclavine (2). Reagents and conditions: (a) isobutylene oxide, lithium 4,4'-ditert-butylbiphenylide (LiDBB), THF, −78 °C, 69%; (b) [Pd((−)-sparteine)Cl2] (31) (10 mol%), O2 (1 atm), (−)-sparteine (40 mol%), 3Å MS, t-BuOH, 40 °C to 70 °C, 98 h, 32, 51%, and 33, 37% (96% ee); (c) LiAlH4, THF, −78 °C, 95%; (d) HN3, PBu3, DIAD, PhMe, −78 °C to −20 °C, 80%; (e) H2, cat. Pd/C, HCl, MeOH, 23 °C; (f) o-NsCl, Et3N, CH2Cl2, 0 °C to 23 °C, 92% (2 steps); (g) PyHBr3, CH2Cl2, 0 °C to 23 °C, 72%; (h) tributylvinyltin, Pd(PPh3)4 (20 mol%), PhMe, 100 °C, 75%; (i) POCl3, pyridine, 0 °C to 23 °C, 95%, 35:36 (68:32); (j) 9-BBN, THF, 23 °C (k) NaOH, H2O2, THF/EtOH/H2O, 0 °C to 23 °C, 48% (2 steps); (l) DIAD, PPh3, PhMe, 0 °C, 95%; (m) PhSH, K2CO3, DMF, 23 °C, 53%; (n) TBAF, THF, 70 °C, 68%.
Scheme 2
Scheme 2
(±)-Aurantioclavine. Reagents and conditions: (a) NEt3, MeOH (1:1), room temperature, 10 h; (b) Tf2O, NEt3, CH2Cl2, 0 °C, 0.5 h, 60% (2 steps); (c) 10% Pd/C, HCO2NH4 (4 equiv.), MeOH, room temperature, 0.5 h, 35% 2, 18% 39, 28% 44; (d) PdCl2(PPh3)2, dppp, NEt3, HCO2H, DMF, 100 °C, 2 h, 43%.
Scheme 3
Scheme 3
(−)-Aurantioclavine (2). Reagents and conditions: (a) TMSCl, Pd(OAc)2 (0.5 mol%), Pd(Ad)2Bu (1.5 mol%), H2/CO (2: 1), TMEDA, 100 °C, PhMe; (b) N-t-Butylsulfinamide 50, Ti(OEt)4, THF, 53% (2 steps); (c) TsCl, NEt3, DMAP, −20 °C, CH2Cl2, 78%; (d) MIDA boronate 52 (2 equiv.), [Rh(OH)(cod)]2 (2.5 mol%), dppbenz (5.0 mol%), K3PO4 (2 equiv.), H2O/ dioxane (3:2), 60 °C, 78%, dr 97:3; (e) NaH, THF, 85%; (f) HCl, MeOH; (g) Mg, MeOH, 99% (2 steps)
Scheme 4
Scheme 4
(−)-Aurantioclavine (2). Reagents and conditions: (a) SEMCl, Cs2CO3, CH3CN, 96%; (b) Pd(OAc)2, SPhos, Na2CO3, DMF, 100 °C, vinylborane 60; (c) DDQ, CH2Cl2/H2O, 82% (2 steps); (d) BocNHTs, DIAD, PPh3, THF, 88%; (e) conc. HCl, MeOH, CH2Cl2, 70%; (f) PhNTf2, Et3N, CH2Cl2, 87%; (g) vinylborane 59, Pd(PPh3)4, Na2CO3, EtOH/PhMe/H2O, 100 °C; (h) DDQ, CH2Cl2/H2O, 84% (2 steps); (i) ClCO2Me, pyridine, CHCl3, reflux; (j) TFA, CHCl3, reflux, 87% (2 steps); (k) tBu-PHOX 66 (45 mol%), Pd2(dba)3 (15 mol%), Bu4NCl (0.30 equiv.), 0 °C, CH2Cl2, 72 h, 77% (95% ee); (l) 2-methyl-2-butene, Grubbs 2nd generation catalyst., 40 °C; (m) P(OEt)3, 170 °C, 78% (2 steps); (n) NaOH (aq), THF/MeOH, reflux; (o) Cu, quinoline, 190 °C, 68% (2 steps); (p) Na/ naphthalene, DME, −78 °C, 90%
Scheme 5
Scheme 5
(−)-Aurantioclavine (2). Reagents and conditions: (a) n-BuLi, DMF, THF, −78°C, 70%; (b) vinyl magnesium bromide, THF, −78°C, 5 min, 85%; (c) 73 (21 mol%), [{Ir(cod)Cl}2] (4 mol%), Sc(OTf)3 (20 mol%), DCE, 86% yield (93% ee); (d) AD-mix-α, t-BuOH/ H2O, room temperature, 5 d (e) NaIO4, MeOH/ H2O, 0 °C, 5 min; (f) LiHMDS, tetrazole 75, THF, −78 °C, 70% BRSM (3 steps); (g) TMSOTf, lutidine, CH2Cl2, 90%; (h) K2CO3, MeOH/ H2O, 100 °C, 90%.
Scheme 6
Scheme 6
(−)-trans-(1a) and (−)-cis-clavicipitic acid (1b). Reagents and conditions: (a) DL-serine, AcOH, Ac2O, 80 °C, 71%; (b) Aspergillus acylase, CoCl2•6H2O, NaH2PO4 buffer, 37 °C, 2 days, 49% (>99% ee); (c) 2-methyl-3-buten-2-ol, Pd(OAc)2 (0.1 equiv.), TPPTS (0.2 equiv.), K2CO3, H2O, 130 °C, 8 h then 60% AcOH (aq), 60 °C, 2 h, 61%.
Scheme 7
Scheme 7
(−)-cis Clavicipitic acid. Reagents and conditions: (a) 82 (3 equiv.), K2CO3 (2 equiv.), DMF, room temperature, 3.5 h, 83%; (b) [Ir(cod)2]BARF (10 mol%), rac-BINAP (10 mol%), PhCl, 135 °C, 15 h, 79%; (c) HBr/ AcOH (10 equiv.), room temperature, overnight; (d) NaBH(OAc)3, (4.2 equiv.), Et3N, CH2Cl2, room temperature, 24 h, 53% (2 steps); (d) KOH, MeOH/H2O (2:1), room temperature, 15 min (ref [46])
Scheme 8
Scheme 8
Rugulovasine A (11a) and B (11b). Reagents and conditions: (a) HNMe2, CH2O; (b) KCN, aq. DMF (1: 1), 71% (2 steps); (c) (Boc)2O, DMAP, Et3N, 94%; (d) DIBAL-H, CH2Cl2, −78 °C, 45 min then room temperature, 5 h; (e) benzylmethylamine, CH2Cl2, room temperature, 8 h; (f) silyloxyfuran 89, benzene, CSA, reflux, 1 h, 45% (3 steps); (g) KOtBu, NH3 (liq.), , 51%; (h) HCl, H2 (1 atm), 20% Pd(OH)2, EtOH, room temperature, 11a:11b (1:2), 74%.
Scheme 9
Scheme 9
Rugulovasines A (11a) and B (11b). Reagents and conditions: (a) furanyl stannane 97, Pd(PPh3)4, PhMe, K2CO3, reflux, 1 h then (Boc)2O, DMAP, Et3N, 94%; (b) DIBAL-H, −78 °C to room temperature, then SiO2, 71%; (c) CBz-OSuc, Et3N, DMF, room temperature, 26 h; (d) NaH, MeI, DMF, 85% (2 steps); (e) Cs2CO3, MeOH; (f) H2, Pd/C, MeOH-THF, 11a:11b (2:1), 74% (2 steps).
Scheme 10
Scheme 10
Rugulovasine A (11a). Reagents and conditions: (a) t-BuLi, THF, −78 °C, 80%; (b) propargylbromide, CrCl3, LiAlH4, THF/HMPA, room temperature, 66% (brsm); (c) Ru3(CO)12, 2,4,6-collidine, CO (1 atm), 100 °C, 58%; (d) Cs2CO3, MeOH/THF, 75%; (e) TMSOTf, 2,6-lutidine, CH2Cl2, 0 °C, 87%
Scheme 11
Scheme 11
Alternative route to intermediate 105. Reagents and conditions: (a) methyl 2-(bromomethyl)acrylate, Zn, I2, THF, 50 °C, 90%; (b) Ru3(CO)12, Et3N, dioxane, 100 °C, 2 h, 95%
Scheme 12
Scheme 12
Cycloclavine (26). Reagents and conditions: (a) ethyl 3-(methylamino)propanoate (110), THF, 48%; (b) LiHMDS, THF, −70 °C, 50%; (c) POCl3, pyridine, 120 °C; (d) HCl, EtOH, 25%; (e) LiAlH4, Et2O, 90 %; (f) SO3•Py, THF; (g) LiAlH4, Et2O, 62% (2 steps); (h) CH2N2, Pd(OAc)2 (i) HCl in dioxane, CH2Cl2/ Et2O, 32% (brsm).
Scheme 13
Scheme 13
Cycloclavine (26). Reagents and conditions: (a) DHP, HCl (cat.), 90%; (b) CHBr3, Et3N, cetrimide, NaOH (aq), CH2Cl2, 95%; (c) n-BuLi, THF, −95 °C then MeI, −95 °C to room temperature, 82%; (d) KOt-Bu, DMSO, room temperature, 69%; (e) p-TsOH, MeOH, room temperature, 79%; (f) MsCl, Et3N, CH2Cl2, 0 °C, 1 h; (g) amide 117, NaH, DMF, room temperature, 12 h, 67% (2 steps); (h) NaHMDS, THF, −78 °C then TBSCl; (i) 195 °C, PhCF3, µw, 1 h 52%, (72% brsm) (2 steps); (j) TBAF, THF, room temperature, 85%; (k) MeOC(O)Cl, 70 °C, 3 h, 71%; (l) LDA, THF, −78 °C, 1 h then TMSCl (1.3 equiv.), CH3CN, 12 h, 67%; (m) 123, n-BuLi, THF, −78 °C, 51%; (n) 180 °C, PhCF3, µW, 30 min, 44% (56% brsm); (o) LiAlH4, THF, 66 °C, 30 min, quantitative.
Scheme 14
Scheme 14
Cycloclavine (26). Reagents and conditions: (a) TBSOTf, Et3N, CH2Cl2, 0 °C to room temperature, 45 min; (b) mCPBA, K2CO3, CH2Cl2, 0 °C, 2 h; (c) TBSCl, DMAP, imidazole, CH2Cl2, 6 h, 70% (3 steps); (d) ethyl diazoacetate, LDA, THF, −78 °C, 2 h, 79%; (e) SnCl4, CH2Cl2, 0 °C, 10 min, 80%; (f) trimethylsilyl methylglycinate (133), PhMe, 0 °C, 30 min then 120 °C, 30 min, 65%; (g) DBU, H2O, THF, reflux, 19 h; (h) TsCl, Bu4NHSO4, KOH, PhMe, 78% (2 steps); (i) DIBAL-H, PhMe, 0 °C to room temperature, 30 min; (j) Et2Zn, I2, CH3I, CH2Cl2, 0 °C to room temperature, 24% (2 steps); (k) MsCl, NEt3, 0 °C, 1 h; (l) LiBHEt3, THF, 0 °C, 45 min; (m) NaOH, MeOH, reflux, 21% (3 steps)
Scheme 15
Scheme 15
Cycloclavine (26). Reagents and conditions: (a) 2-hydroxy homopropargyl tosylamine (138), FeCl3, CH2Cl2, reflux, 0.2 h, 83%; (b) NaBH4, CeCl3•7H2O, MeOH, 0 °C; (c) PhSSPh, n-Bu3P, benzene, 81% (2 steps); (d) n-Bu3SnH, AIBN, benzene, reflux, 91%; (e) p-TsOH•H2O, benzene, reflux, 63%; (f) sodium naphthalenide, THF, −78 °C; (g) formalin, AcOH, NaBH3CN, THF, 71% (2 steps).
Scheme 16
Scheme 16
Cycloclavine (26). Reagents and conditions: (a) EtOCHO, 93%; (b) LiAlH4, Et2O; (c) methacryloyl chloride 150, NaOH (aq), 79% (2 steps); (d) 152 (1 mol%), PhMe, reflux, 73%; (e) POCl3, DMF, 91%; (f) (Boc)2O, DMAP, MeCN, quant.; (g) NaBH4, MeOH, 0 °C to room temperature, 92%; (h) Br2, PPh3, cyclohexane, 93%; (i) pyrrolinone 146, NaH, DMF, 0 °C to room temperature, 52%; (j) Pd(OAc)2 (10 mol%), PPh3 (60 mol%), Ag2CO3 (2 equiv.), NEt3, PhMe, 110 °C, 74%; (k) LiAlH4, THF, reflux, 56%

Similar articles

Cited by

References

    1. Hofmann A. In: Plants in the developments of modern medicine. Swain T, editor. Cambridge, Mass: Harvard University Press; 1972. pp. 235–260.
    1. Lee MR. J. R. Coll. Physicians Edinb. 2009;39:179–184. - PubMed
    1. Tittlemier SA, Drul D, Roscoe M, McKendry T. J Agric. Food Chem. 2015;63:6644–6650. - PubMed
    1. Coufal-Majewski S, Stanford K, McAllister T, Blakley B, McKinnon J, Chaves AV, Wang Y. Front. Vet. Sci. 2016;3:15. - PMC - PubMed
    1. Miedaner T, Geiger HH. Toxins. 2015;7:659–678. - PMC - PubMed

Substances