Sleep staging automaton based on the theory of evidence
- PMID: 2722203
- DOI: 10.1109/10.24251
Sleep staging automaton based on the theory of evidence
Abstract
This paper addresses sleep staging as a medical decision problem. It develops a model for automated sleep staging by combining signal information, human heuristic knowledge in the form of rules, and a mathematical framework. The EEG/EOG/EMG events relevant for sleep staging are detected in real time by an existing front-end system and are summarized per minute. These token data are translated, normalized, and constitute the input alphabet to a finite state machine (automaton). The processed token events are used as partial belief in a set of anthropomimetic rules, which encode human knowledge about the occurrence of a particular sleep stage. The Dempster-Shafer theory of evidence weighs the partial beliefs and attributes the minutes sleep stage to the machine state transition that displays the highest final belief. Results are briefly presented.
Similar articles
-
Multivariate analysis of full-term neonatal polysomnographic data.IEEE Trans Inf Technol Biomed. 2009 Jan;13(1):104-10. doi: 10.1109/TITB.2008.2007193. IEEE Trans Inf Technol Biomed. 2009. PMID: 19129029
-
[Application of complexity sequence in sleep staging based on sleep EEG data].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2003 Mar;20(1):60-3. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2003. PMID: 12744164 Chinese.
-
A rule-based automatic sleep staging method.J Neurosci Methods. 2012 Mar 30;205(1):169-76. doi: 10.1016/j.jneumeth.2011.12.022. Epub 2012 Jan 9. J Neurosci Methods. 2012. PMID: 22245090
-
Rethinking sleep analysis.J Clin Sleep Med. 2008 Apr 15;4(2):99-103. J Clin Sleep Med. 2008. PMID: 18468306 Free PMC article. Review.
-
Automated sleep staging systems in rats.J Neurosci Methods. 1999 May 1;88(2):111-22. doi: 10.1016/s0165-0270(99)00027-8. J Neurosci Methods. 1999. PMID: 10389657 Review.
Cited by
-
Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG.J Med Syst. 2010 Aug;34(4):717-25. doi: 10.1007/s10916-009-9286-5. Epub 2009 Apr 8. J Med Syst. 2010. PMID: 20703927
-
Review of neural network applications in medical imaging and signal processing.Med Biol Eng Comput. 1992 Sep;30(5):449-64. doi: 10.1007/BF02457822. Med Biol Eng Comput. 1992. PMID: 1293435 Review.
-
An open-source hardware and software system for acquisition and real-time processing of electrophysiology during high field MRI.J Neurosci Methods. 2008 Nov 15;175(2):165-86. doi: 10.1016/j.jneumeth.2008.07.017. Epub 2008 Aug 5. J Neurosci Methods. 2008. PMID: 18761038 Free PMC article.
-
A perspective on automated rapid eye movement sleep assessment.J Sleep Res. 2025 Apr;34(2):e14223. doi: 10.1111/jsr.14223. Epub 2024 Apr 23. J Sleep Res. 2025. PMID: 38650539 Free PMC article. Review.
-
Inter-database validation of a deep learning approach for automatic sleep scoring.PLoS One. 2021 Aug 16;16(8):e0256111. doi: 10.1371/journal.pone.0256111. eCollection 2021. PLoS One. 2021. PMID: 34398931 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources