Single-Molecule Force Spectroscopy Reveals Multiple Binding Modes between DOPA and Different Rutile Surfaces
- PMID: 27223875
- DOI: 10.1002/cphc.201600374
Single-Molecule Force Spectroscopy Reveals Multiple Binding Modes between DOPA and Different Rutile Surfaces
Abstract
Inspired by marine mussel adhesive systems, numerous 3,4-dihydroxyphenylalanine (DOPA)-containing surface coating materials have been recently designed. It is well known that DOPA has a strong adhesion ability to different kinds of wet surfaces. However, the molecular mechanism of DOPA adhesion remains elusive. Recent biophysical studies of DOPA adhesion by both surface force apparatus (SFA) and atomic force microscopy (AFM) suggest that DOPA can bind to a wide range of surfaces exhibiting diverse chemical properties through different binding mechanisms. Here, using AFM-based single-molecule force spectroscopy, we show that even for chemically well-defined crystal surfaces, DOPA can bind to them by multiple binding modes. The binding forces between DOPA and different rutile TiO2 surfaces can vary within a broad range from 40-800 pN at a pulling speed of 1000 nm s-1 and are largely dependent on the surface properties. Our findings indicate that the local chemical environment can greatly affect DOPA adhesion, and that single-molecule force spectroscopy is a unique tool to reveal the heterogeneity of DOPA adhesion to the same surface.
Keywords: atomic force microscopy; coordination bond strength; mussel adhesion; single-molecule spectroscopy; surface structure.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
The molecular mechanisms underlying mussel adhesion.Nanoscale Adv. 2019 Oct 10;1(11):4246-4257. doi: 10.1039/c9na00582j. eCollection 2019 Nov 5. Nanoscale Adv. 2019. PMID: 36134404 Free PMC article. Review.
-
Single molecule evidence for the adaptive binding of DOPA to different wet surfaces.Langmuir. 2014 Apr 22;30(15):4358-66. doi: 10.1021/la501189n. Epub 2014 Apr 9. Langmuir. 2014. PMID: 24716607
-
Single-molecule mechanics of mussel adhesion.Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12999-3003. doi: 10.1073/pnas.0605552103. Epub 2006 Aug 18. Proc Natl Acad Sci U S A. 2006. PMID: 16920796 Free PMC article.
-
Molecular Interaction Mechanisms Between Lubricant-Infused Slippery Surfaces and Mussel-Inspired Polydopamine Adhesive and DOPA Moiety.Macromol Rapid Commun. 2024 Oct;45(20):e2400276. doi: 10.1002/marc.202400276. Epub 2024 Jul 19. Macromol Rapid Commun. 2024. PMID: 39031940
-
Atomic resolution non-contact atomic force microscopy of clean metal oxide surfaces.J Phys Condens Matter. 2010 Jul 7;22(26):263001. doi: 10.1088/0953-8984/22/26/263001. Epub 2010 May 24. J Phys Condens Matter. 2010. PMID: 21386455 Review.
Cited by
-
Molecular design principles of Lysine-DOPA wet adhesion.Nat Commun. 2020 Aug 4;11(1):3895. doi: 10.1038/s41467-020-17597-4. Nat Commun. 2020. PMID: 32753588 Free PMC article.
-
Direct Observation of the Interplay of Catechol Binding and Polymer Hydrophobicity in a Mussel-Inspired Elastomeric Adhesive.ACS Cent Sci. 2018 Oct 24;4(10):1420-1429. doi: 10.1021/acscentsci.8b00526. Epub 2018 Oct 9. ACS Cent Sci. 2018. PMID: 30410980 Free PMC article.
-
Single-Molecule Force Spectroscopy Reveals Adhesion-by-Demand in Statherin at the Protein-Hydroxyapatite Interface.Langmuir. 2020 Nov 10;36(44):13292-13300. doi: 10.1021/acs.langmuir.0c02325. Epub 2020 Oct 29. Langmuir. 2020. PMID: 33118809 Free PMC article.
-
The molecular mechanisms underlying mussel adhesion.Nanoscale Adv. 2019 Oct 10;1(11):4246-4257. doi: 10.1039/c9na00582j. eCollection 2019 Nov 5. Nanoscale Adv. 2019. PMID: 36134404 Free PMC article. Review.
-
Blocking Nonspecific Interactions Using Y-Shape Poly(ethylene glycol).Int J Mol Sci. 2023 Aug 4;24(15):12414. doi: 10.3390/ijms241512414. Int J Mol Sci. 2023. PMID: 37569789 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous