Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun 2;18(11):1466-1469.
doi: 10.1002/cphc.201600374. Epub 2016 Jun 7.

Single-Molecule Force Spectroscopy Reveals Multiple Binding Modes between DOPA and Different Rutile Surfaces

Affiliations

Single-Molecule Force Spectroscopy Reveals Multiple Binding Modes between DOPA and Different Rutile Surfaces

Yiran Li et al. Chemphyschem. .

Abstract

Inspired by marine mussel adhesive systems, numerous 3,4-dihydroxyphenylalanine (DOPA)-containing surface coating materials have been recently designed. It is well known that DOPA has a strong adhesion ability to different kinds of wet surfaces. However, the molecular mechanism of DOPA adhesion remains elusive. Recent biophysical studies of DOPA adhesion by both surface force apparatus (SFA) and atomic force microscopy (AFM) suggest that DOPA can bind to a wide range of surfaces exhibiting diverse chemical properties through different binding mechanisms. Here, using AFM-based single-molecule force spectroscopy, we show that even for chemically well-defined crystal surfaces, DOPA can bind to them by multiple binding modes. The binding forces between DOPA and different rutile TiO2 surfaces can vary within a broad range from 40-800 pN at a pulling speed of 1000 nm s-1 and are largely dependent on the surface properties. Our findings indicate that the local chemical environment can greatly affect DOPA adhesion, and that single-molecule force spectroscopy is a unique tool to reveal the heterogeneity of DOPA adhesion to the same surface.

Keywords: atomic force microscopy; coordination bond strength; mussel adhesion; single-molecule spectroscopy; surface structure.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources