Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning
- PMID: 27224739
- DOI: 10.1021/acs.jctc.6b00457
Multipolar Electrostatic Energy Prediction for all 20 Natural Amino Acids Using Kriging Machine Learning
Abstract
A machine learning method called kriging is applied to the set of all 20 naturally occurring amino acids. Kriging models are built that predict electrostatic multipole moments for all topological atoms in any amino acid based on molecular geometry only. These models then predict molecular electrostatic interaction energies. On the basis of 200 unseen test geometries for each amino acid, no amino acid shows a mean prediction error above 5.3 kJ mol(-1), while the lowest error observed is 2.8 kJ mol(-1). The mean error across the entire set is only 4.2 kJ mol(-1) (or 1 kcal mol(-1)). Charged systems are created by protonating or deprotonating selected amino acids, and these show no significant deviation in prediction error over their neutral counterparts. Similarly, the proposed methodology can also handle amino acids with aromatic side chains, without the need for modification. Thus, we present a generic method capable of accurately capturing multipolar polarizable electrostatics in amino acids.
Similar articles
-
FFLUX: Transferability of polarizable machine-learned electrostatics in peptide chains.J Comput Chem. 2017 May 15;38(13):1005-1014. doi: 10.1002/jcc.24775. Epub 2017 Mar 10. J Comput Chem. 2017. PMID: 28295430
-
Prediction of Intramolecular Polarization of Aromatic Amino Acids Using Kriging Machine Learning.J Chem Theory Comput. 2014 Sep 9;10(9):3708-19. doi: 10.1021/ct500416k. J Chem Theory Comput. 2014. PMID: 26588516
-
Accuracy and tractability of a kriging model of intramolecular polarizable multipolar electrostatics and its application to histidine.J Comput Chem. 2013 Aug 5;34(21):1850-61. doi: 10.1002/jcc.23333. Epub 2013 May 29. J Comput Chem. 2013. PMID: 23720381
-
Calculations on noncovalent interactions and databases of benchmark interaction energies.Acc Chem Res. 2012 Apr 17;45(4):663-72. doi: 10.1021/ar200255p. Epub 2012 Jan 6. Acc Chem Res. 2012. PMID: 22225511 Review.
-
Chemoinformatics at IFP Energies Nouvelles: Applications in the Fields of Energy, Transport, and Environment.Mol Inform. 2017 Oct;36(10). doi: 10.1002/minf.201700028. Epub 2017 Apr 18. Mol Inform. 2017. PMID: 28418201 Review.
Cited by
-
pH Dependence of Charge Multipole Moments in Proteins.Biophys J. 2017 Oct 3;113(7):1454-1465. doi: 10.1016/j.bpj.2017.08.017. Biophys J. 2017. PMID: 28978439 Free PMC article.
-
Geometry Optimization with Machine Trained Topological Atoms.Sci Rep. 2017 Oct 9;7(1):12817. doi: 10.1038/s41598-017-12600-3. Sci Rep. 2017. PMID: 28993674 Free PMC article.
-
Non-covalent interactions from a Quantum Chemical Topology perspective.J Mol Model. 2022 Aug 25;28(9):276. doi: 10.1007/s00894-022-05188-7. J Mol Model. 2022. PMID: 36006513 Free PMC article.
-
Machine Learning Interatomic Potentials and Long-Range Physics.J Phys Chem A. 2023 Mar 23;127(11):2417-2431. doi: 10.1021/acs.jpca.2c06778. Epub 2023 Feb 21. J Phys Chem A. 2023. PMID: 36802360 Free PMC article. Review.
-
Gaussian Process Regression Models for Predicting Atomic Energies and Multipole Moments.J Chem Theory Comput. 2023 Feb 28;19(4):1370-1380. doi: 10.1021/acs.jctc.2c00731. Epub 2023 Feb 9. J Chem Theory Comput. 2023. PMID: 36757024 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources