Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Case Reports
. 2016 May 25;14(1):32.
doi: 10.1186/s12969-016-0093-5.

Protein-losing enteropathy in camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome

Affiliations
Case Reports

Protein-losing enteropathy in camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome

Bram Peters et al. Pediatr Rheumatol Online J. .

Abstract

Background: Camptodactyly-arthropathy-coxa vara-pericarditis (CACP, OMIM: #208250) syndrome is a rare autosomal recessive disease that can be difficult to recognise not only because of its wide clinical variability but also because of its clinical resemblance to juvenile idiopathic arthritis (JIA). PRG4 is the only gene so far known to be associated with CACP syndrome. Children with CACP syndrome lack the glycoprotein lubricin due to recessive mutations in PRG4. Lubricin serves as a lubricant in joints, tendons and visceral cavities (pleural cavity, pericardium) and inhibits synovial proliferation. Children with CACP syndrome suffer from congenital camptodactyly, arthropathy, coxa vara and sometimes pericarditis. This report concerns a child with CACP syndrome complicated by protein-losing enteropathy (PLE), caused by constrictive pericarditis and so contributes to knowledge of the presentation of CACP syndrome.

Case presentation: A 10- year-old girl with consanguineous parents suffered from congenital camptodactyly and progressive swollen and painful joints. Her father and his sister had similar childhood-onset joint complaints. Laboratory tests showed no signs of inflammation but showed persistent low protein- and IgG- levels, indicating a secondary immunodeficiency. Increased alpha antitrypsin clearance confirmed PLE. Abdominal ultrasound with Doppler showed hepatomegaly and portal hypertension. Echocardiography suggested constrictive pericarditis. However, heart catheterization could not confirm this. Ultrasound and X-ray examination of the joints combined with a puncture of the synovial fluid were performed. These results, combined with the clinical presentation and the consanguinity, suggested CACP syndrome. Due to excessive enteral protein losses, the patient was treated with Cotrimoxazol prophylaxis and immunoglobulin supplements. These supplements were inadequate to achieve normal IgG values. As constrictive pericarditis with subsequent PLE was the best explanation for the excessive IgG losses, pericardiectomy was performed with good results. Genetic testing in our patient was complicated but revealed a pathogenic mutation within the repeat sequence in exon 7 of the PRG4 gene.

Conclusion: PLE resulting from constrictive pericarditis can be a complication of CACP syndrome. As serious complications can arise from the resulting secondary immunodeficiency, we recommend regular evaluation of clinical symptoms of constrictive pericarditis and PLE in children with CACP syndrome.

Keywords: Camptodactyly-arthropathy coxa vara-pericarditis (CACP) syndrome; Constrictive pericarditis; Diagnosis; Hypogammaglobulinaemia; Juvenile idiopathic arthritis (JIA); Lubricin; Protein-losing enteropathy (PLE); Proteoglycan 4 gene (PRG4); Secondary immunodeficiency.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Right hand of the patient. Fifth finger camptodactyly
Fig. 2
Fig. 2
Right hand of the patient's father. Camptodactyly in all fingers. The father has a more extended form of camptodactyly. It demonstrates the variable presentation of the camptodactyly and clinical variability of the CACP syndrome even within families

References

    1. Albuhairan I, Al-Mayouf SM. Camptodactyly-arthropathy-coxa vara-pericarditis syndrome in Saudi Arabia: clinical and molecular genetic findings in 22 patients. Semin Arthritis Rheum. 2013;43:292–6. doi: 10.1016/j.semarthrit.2012.11.004. - DOI - PubMed
    1. Nandagopalan RS, Phadke SR, Dalal AB, Ranganath P. Novel mutations in PRG4 gene in two Indian families with camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome. Indian J Med Res. 2014;140:221–6. - PMC - PubMed
    1. Faivre L, Prieur AM, Le Merrer M, Hayem F, Penet C, Woo P, et al. Clinical variability and genetic homogeneity of the camptodactyly-arthropathy-coxa vara- pericarditis syndrome. Am J Med Genet. 2000;95:233–6. doi: 10.1002/1096-8628(20001127)95:3<233::AID-AJMG9>3.0.CO;2-3. - DOI - PubMed
    1. Stenson PD, Mort M, Ball EV, Shaw K, Phillips A, Cooper DN. The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum Genet. 2014;133:1–9. doi: 10.1007/s00439-013-1358-4. - DOI - PMC - PubMed
    1. Ciullini Mannurita S, Vignoli M, Bianchi L, Kondi A, Gerloni V, Breda L, et al. CACP syndrome: identification of five novel mutations and the first case of UPD in the largest European cohort. Eur J Hum Genet. 2014;22:197–201. doi: 10.1038/ejhg.2013.123. - DOI - PMC - PubMed

Publication types

Supplementary concepts