Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun 15;138(23):7240-3.
doi: 10.1021/jacs.6b03166. Epub 2016 Jun 6.

Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range

Affiliations

Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range

Javad Shamsi et al. J Am Chem Soc. .

Abstract

We report the nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells (i.e., below 5 nm), hence in the strong quantum confinement regime, by introducing short ligands (octanoic acid and octylamine) in the synthesis together with longer ones (oleic acid and oleylamine). The lateral size is tunable by varying the ratio of shorter ligands over longer ligands, while the thickness is mainly unaffected by this parameter and stays practically constant at 3 nm in all the syntheses conducted at short-to-long ligands volumetric ratio below 0.67. Beyond this ratio, control over the thickness is lost and a multimodal thickness distribution is observed.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Effect of increasing the ratio of short to long ligands on controlling the lateral size of CsPbBr3 NSs. Representative (a−d) TEM images, (e,g,i,k) lateral size distribution, and (f,h,j,l) emission spectra of CsPbBr3 NSs prepared with short-to-long ligands molar ratios equal to X = 0.33 (a,e,f), X = 0.40 (b,g,h), X = 0.52 (c,i,j), and X = 0.67 (d,k,l). Scale bars in all TEM images are 1 μm long.
Figure 2
Figure 2
Confocal (a) and atomic force (b–d) microscopy analysis of the NSs. Scale bars correspond to 10 μm (panel a) and 1 μm (panel b). Panel c reports the height profiles obtained from the image in (b) along the red and black lines. (d) Height distribution over the whole image. The peak centered at 0 nm corresponds to the bare glass substrate.
Figure 3
Figure 3
(a) HRTEM from a thin region of a CsPbBr3 sheet partly suspended on a hole in the carbon film. Scale bar: 2 nm. The inset shows the low magnification TEM image of the whole NS. The scale bar in the inset is 100 nm. (b) Corresponding FFT of (a), consistent with an orientation along the [00–1] zone-axis. (c) Azimuthal integration of the SAED pattern performed on the thin area in (a), and comparison with reference cards for the orthorhombic and the cubic CsPbBr3 phases, respectively.

References

    1. Geim A. K. Science 2009, 324, 1530.10.1126/science.1158877. - DOI - PubMed
    1. Zhang H. ACS Nano 2015, 9, 9451.10.1021/acsnano.5b05040. - DOI - PubMed
    2. Zhao W.; Ribeiro R. M.; Eda G. Acc. Chem. Res. 2015, 48, 91.10.1021/ar500303m. - DOI - PubMed
    3. Ataca C.; Şahin H.; Ciraci S. J. Phys. Chem. C 2012, 116, 8983.10.1021/jp212558p. - DOI - PubMed
    4. Lin Y.; Williams T. V.; Connell J. W. J. Phys. Chem. Lett. 2010, 1, 277.10.1021/jz9002108. - DOI
    1. Tan C.; Zhang H. Nat. Commun. 2015, 6, 7873.10.1038/ncomms8873. - DOI - PMC - PubMed
    1. Wang F.; Wang Y.; Liu Y.-H.; Morrison P. J.; Loomis R. A.; Buhro W. E. Acc. Chem. Res. 2015, 48, 13.10.1021/ar500286j. - DOI - PubMed
    2. Lhuillier E.; Pedetti S.; Ithurria S.; Nadal B.; Heuclin H.; Dubertret B. Acc. Chem. Res. 2015, 48, 22.10.1021/ar500326c. - DOI - PubMed
    1. Schmidt L. C.; Pertegás A.; González-Carrero S.; Malinkiewicz O.; Agouram S.; Mínguez Espallargas G.; Bolink H. J.; Galian R. E.; Pérez-Prieto J. J. Am. Chem. Soc. 2014, 136, 850.10.1021/ja4109209. - DOI - PubMed
    2. Protesescu L.; Yakunin S.; Bodnarchuk M. I.; Krieg F.; Caputo R.; Hendon C. H.; Yang R. X.; Walsh A.; Kovalenko M. V. Nano Lett. 2015, 15, 3692.10.1021/nl5048779. - DOI - PMC - PubMed
    3. Aygüler M. F.; Weber M. D.; Puscher B. M. D.; Medina D. D.; Docampo P.; Costa R. D. J. Phys. Chem. C 2015, 119, 12047.10.1021/acs.jpcc.5b02959. - DOI
    4. Zhang F.; Zhong H.; Chen C.; Wu X.-g.; Hu X.; Huang H.; Han J.; Zou B.; Dong Y. ACS Nano 2015, 9, 4533.10.1021/acsnano.5b01154. - DOI - PubMed
    5. Huang H.; Susha A. S.; Kershaw S. V.; Hung T. F.; Rogach A. L. Adv. Sci. 2015, 2, 00194.10.1002/advs.201500194. - DOI - PMC - PubMed
    6. Zhu F.; Men L.; Guo Y.; Zhu Q.; Bhattacharjee U.; Goodwin P. M.; Petrich J. W.; Smith E. A.; Vela J. ACS Nano 2015, 9, 2948.10.1021/nn507020s. - DOI - PubMed
    7. Huang H.; Zhao F.; Liu L.; Zhang F.; Wu X.-g.; Shi L.; Zou B.; Pei Q.; Zhong H. ACS Appl. Mater. Interfaces 2015, 7, 28128.10.1021/acsami.5b10373. - DOI - PubMed

Publication types