Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 11;17(7):2384-91.
doi: 10.1021/acs.biomac.6b00427. Epub 2016 Jun 14.

Physical Gelation of α-Helical Copolypeptides

Affiliations

Physical Gelation of α-Helical Copolypeptides

Charlotte D Vacogne et al. Biomacromolecules. .

Abstract

Owing to its rod-like α-helical secondary structure, the synthetic polypeptide poly(γ-benzyl-l-glutamate) (PBlG) can form physical and thermoreversible gels in helicogenic solvents such as toluene. The versatility of PBlG can be increased by introducing functionalizable comonomers, such as allylglycine (AG). In this work we examined the secondary structure of PBlG and a series of statistical poly(γ-benzyl-l-glutamate-co-allylglycine) copolypeptides, varying in composition and chain length, by circular dichroism (CD), Fourier-transform infrared (FTIR) and Raman spectroscopy, and wide-angle X-ray scattering (WAXS). The secondary structure of PBlG and the copolypeptides presented dissimilarities that increased with increasing AG molar fraction, especially when racemic AG units were incorporated. The physical gelation behavior of these copolypeptides was analyzed by temperature-sweep (1)H NMR and rheological measurements. The study revealed that both copolypeptide composition and chain length affected secondary structure, gelation temperature, and gel stiffness.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources