Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec:34:82-100.
doi: 10.1016/j.media.2016.05.003. Epub 2016 May 13.

Real-time localization of articulated surgical instruments in retinal microsurgery

Affiliations

Real-time localization of articulated surgical instruments in retinal microsurgery

Nicola Rieke et al. Med Image Anal. 2016 Dec.

Abstract

Real-time visual tracking of a surgical instrument holds great potential for improving the outcome of retinal microsurgery by enabling new possibilities for computer-aided techniques such as augmented reality and automatic assessment of instrument manipulation. Due to high magnification and illumination variations, retinal microsurgery images usually entail a high level of noise and appearance changes. As a result, real-time tracking of the surgical instrument remains challenging in in-vivo sequences. To overcome these problems, we present a method that builds on random forests and addresses the task by modelling the instrument as an articulated object. A multi-template tracker reduces the region of interest to a rectangular area around the instrument tip by relating the movement of the instrument to the induced changes on the image intensities. Within this bounding box, a gradient-based pose estimation infers the location of the instrument parts from image features. In this way, the algorithm does not only provide the location of instrument, but also the positions of the tool tips in real-time. Various experiments on a novel dataset comprising 18 in-vivo retinal microsurgery sequences demonstrate the robustness and generalizability of our method. The comparison on two publicly available datasets indicates that the algorithm can outperform current state-of-the art.

Keywords: Pose estimation; Retinal microsurgery; Visual tracking.

PubMed Disclaimer