Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 May 20:7:89.
doi: 10.3389/fpsyt.2016.00089. eCollection 2016.

The Genetic Basis of Cognitive Impairment and Dementia in Parkinson's Disease

Affiliations
Review

The Genetic Basis of Cognitive Impairment and Dementia in Parkinson's Disease

Lucy M Collins et al. Front Psychiatry. .

Abstract

Cognitive dysfunction is a common feature of Parkinson's disease (PD) with mild cognitive impairment affecting around a quarter of patients in the early stages of their disease, and approximately half developing dementia by 10 years from diagnosis. However, the pattern of cognitive impairments and their speed of evolution vary markedly between individuals. While some of this variability may relate to extrinsic factors and comorbidities, inherited genetic heterogeneity is also known to play an important role. A number of common genetic variants have been identified, which contribute to cognitive function in PD, including variants in catechol-O-methyltransferase, microtubule-associated protein tau, and apolipoprotein E. Furthermore, rarer mutations in glucocerebrosidase and α-synuclein and are strongly associated with dementia risk in PD. This review explores the functional impact of these variants on cognition in PD and discusses how such genotype-phenotype associations provide a window into the mechanistic basis of cognitive heterogeneity in this disorder. This has consequent implications for the development of much more targeted therapeutic strategies for cognitive symptoms in PD.

Keywords: APOE; COMT; GBA; MAPT; Parkinson’s disease; cognition; dementia; genetics.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Schematic representation of the two distinct cognitive syndromes of Parkinson’s disease. “Frontal executive” impairments in early disease appear to be a consequence of a hyperdopaminergic state in the prefrontal cortex, which is in turn modulated by COMT genotype and dopaminergic medication. These deficits can get better or worse over time but are not associated global cognitive decline and dementia risk. In contrast, early deficits on more posterior cortically based cognitive tasks do not have a dopaminergic basis, but reflect the early stages of a dementing process due to Lewy body deposition and Alzheimer’s type changes in posterior cortical areas. This irreversible pathological process is influenced by early on by GBA mutations, MAPT H1/H2 haplotypes, and at a later disease stage by variation in APOE.
Figure 2
Figure 2
The relationship between working memory (WM) performance and dopamine levels in the prefrontal cortex follows an inverted U-shaped curve. Behavioral and functional imaging data from PD patients indicates that an individual’s position on the curve is dependent on their stage of disease as well as their COMT val158met genotype (which determines the activity of the COMT enzyme). Hence, the relationship between executive function and COMT genotype in PD is complex, and executive deficits may improve rather than worsen in certain genotypic groups as the disease progresses. Reproduced from Williams-Gray et al. (84).

Similar articles

Cited by

References

    1. Williams-Gray CH, Mason SL, Evans JR, Foltynie T, Brayne C, Robbins TW, et al. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. J Neurol Neurosurg Psychiatry (2013) 84:1258–64.10.1136/jnnp-2013-305277 - DOI - PubMed
    1. Compta Y, Parkkinen L, O’Sullivan SS, Vandrovcova J, Holton JL, Collins C, et al. Lewy-and Alzheimer-type pathologies in Parkinson’s disease dementia: which is more important? Brain (2011) 134(Pt 5):1493–505.10.1093/brain/awr031 - DOI - PMC - PubMed
    1. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol (2003) 60:1745–8.10.1001/archneur.60.12.1745 - DOI - PubMed
    1. Compta Y, Pereira JB, Ríos J, Ibarretxe-Bilbao N, Junqué C, Bargalló N, et al. Combined dementia-risk biomarkers in Parkinson’s disease: a prospective longitudinal study. Parkinsonism Relat Disord (2013) 19:717–24.10.1016/j.parkreldis.2013.03.009 - DOI - PubMed
    1. Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med (2011) 52:848–55.10.2967/jnumed.111.089946 - DOI - PMC - PubMed

LinkOut - more resources