Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2016 May 31;13(5):e1002032.
doi: 10.1371/journal.pmed.1002032. eCollection 2016 May.

Prices, Costs, and Affordability of New Medicines for Hepatitis C in 30 Countries: An Economic Analysis

Affiliations
Comparative Study

Prices, Costs, and Affordability of New Medicines for Hepatitis C in 30 Countries: An Economic Analysis

Swathi Iyengar et al. PLoS Med. .

Abstract

Introduction: New hepatitis C virus (HCV) medicines have markedly improved treatment efficacy and regimen tolerability. However, their high prices have limited access, prompting wide debate about fair and affordable prices. This study systematically compared the price and affordability of sofosbuvir and ledipasvir/sofosbuvir across 30 countries to assess affordability to health systems and patients.

Methods and findings: Published 2015 ex-factory prices for a 12-wk course of treatment were provided by the Pharma Price Information (PPI) service of the Austrian public health institute Gesundheit Österreich GmbH or were obtained from national government or drug reimbursement authorities and recent press releases, where necessary. Prices in Organisation for Economic Co-operation and Development (OECD) member countries and select low- and middle-income countries were converted to US dollars using period average exchange rates and were adjusted for purchasing power parity (PPP). We analysed prices compared to national economic performance and estimated market size and the cost of these drugs in terms of countries' annual total pharmaceutical expenditure (TPE) and in terms of the duration of time an individual would need to work to pay for treatment out of pocket. Patient affordability was calculated using 2014 OECD average annual wages, supplemented with International Labour Organization median wage data where necessary. All data were compiled between 17 July 2015 and 25 January 2016. For the base case analysis, we assumed a 23% rebate/discount on the published price in all countries, except for countries with special pricing arrangements or generic licensing agreements. The median nominal ex-factory price of a 12-wk course of sofosbuvir across 26 OECD countries was US$42,017, ranging from US$37,729 in Japan to US$64,680 in the US. Central and Eastern European countries had higher PPP-adjusted prices than other countries: prices of sofosbuvir in Poland and Turkey (PPP$101,063 and PPP$70,331) and of ledipasvir/sofosbuvir in Poland (PPP$118,754) were at least 1.09 and 1.63 times higher, respectively than in the US (PPP$64,680 and PPP$72,765). Based on PPP-adjusted TPE and without the cost of ribavirin and other treatment costs, treating the entire HCV viraemic population with these regimens at the PPP-adjusted prices with a 23% price reduction would amount to at least one-tenth of current TPE across the countries included in this study, ranging from 10.5% of TPE in the Netherlands to 190.5% of TPE in Poland. In 12 countries, the price of a course of sofosbuvir without other costs was equivalent to 1 y or more of the average annual wage of individuals, ranging from 0.21 y in Egypt to 5.28 y in Turkey. This analysis relies on the accuracy of price information and infection prevalence estimates. It does not include the costs of diagnostic testing, supplementary treatments, treatment for patients with reinfection or cirrhosis, or associated health service costs.

Conclusions: Current prices of these medicines are variable and unaffordable globally. These prices threaten the sustainability of health systems in many countries and prevent large-scale provision of treatment. Stakeholders should implement a fairer pricing framework to deliver lower prices that take account of affordability. Without lower prices, countries are unlikely to be able to increase investment to minimise the burden of hepatitis C.

PubMed Disclaimer

Conflict of interest statement

We have read the journal's policy and the authors of this manuscript have the following competing interests: SH is a member of the PLOS Medicine Editorial Board. KTT has been an employee of Deloitte Australia within the past 5 years. Deloitte Australia has provided consulting services to pharmaceutical companies. However, KTT has not been involved in any project directly related to the content of this manuscript that can lead to conflict of interest.

Figures

Fig 1
Fig 1. Comparison of nominal and PPP-adjusted prices of sofosbuvir and ledipasvir/sofosbuvir.
Fig 1 shows the nominal (USD FOREX) and PPP-adjusted (USD PPP) prices of (A) sofosbuvir and (B) ledipasvir/sofosbuvir, with and without a 23% rebate (or price reduction). Dark blue bars show the nominal prices of the medicines assuming a 23% rebate. Light blue bars show the nominal prices of the medicines without rebate. Dark green bars show the PPP-adjusted prices of the medicines assuming a 23% rebate. Light green bars show the PPP-adjusted prices of the medicines without rebate.
Fig 2
Fig 2. Relationship between PPP-adjusted price, GDP per capita, and estimated market size for sofosbuvir and ledipasvir/sofosbuvir.
Fig 2 shows the relationship between PPP-adjusted price (y-axis), GDP per capita (USD PPP) (x-axis), and estimated market size (circle size) for (A) sofosbuvir and (B) ledipasvir/sofosbuvir. Solid circles indicate countries where insurance agencies/reimbursement organisations are likely to obtain confidential rebates/price reductions for the medicines, and thus have a 23% rebate in the analysis. Unfilled circles indicate countries that have special pricing arrangements and are unlikely to obtain additional price reductions, and therefore have no further discounts in the analysis. The estimated market size for each country is based on the point estimate of the viraemic population reported by Gower et al. [1].
Fig 3
Fig 3. Financial impact of treatment coverage for the entire estimated population of people with HCV who require treatment with sofosbuvir or ledipasvir/sofosbuvir.
Fig 3 shows the financial impact of covering the entire estimated population of people with HCV who require treatment with (A) sofosbuvir or (B) ledipasvir/sofosbuvir. Financial impact on national budgets is measured by multiplying the PPP-adjusted cost of the medicines (USD PPP) and the point estimates of adult population with HCV viraemia, as reported by Gower et al. [1]. Error bars indicate the financial impact in each country based on the upper and lower estimates of the total adult viraemic population, as reported by Gower et al. The dotted curves indicate countries that may require more than PPP$5 billion, PPP$20 billion, PPP$50 billion, and PPP$150 billion to treat 100% of their total adult viraemic population.
Fig 4
Fig 4. Duration of time an individual would need to work to pay for 12 wk of treatment with the hepatitis C medicines sofosbuvir and ledipasvir/sofosbuvir.
Fig 4 shows duration of time that an individual would need to work to obtain sufficient income to pay for 12 wk of treatment with (A) sofosbuvir and (B) ledipasvir/sofosbuvir. Average annual wage—from OECD average annual wage or, in the case of Brazil, Egypt, Iceland, and Turkey, International Labour Organization Global Wage Database median nominal monthly earnings—is adjusted for PPP (USD PPP). The duration of working time, expressed in years, required by patients to pay for a 12-wk course of treatment for each country is calculated from the PPP dollar price of the treatment and the average wage. The price of treatment is discounted by 23% in all countries except Mongolia, Brazil, Egypt, and India, as they have special pricing arrangements and are not expected to receive additional discounts.

Comment in

References

    1. Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol. 2014;61(1 Suppl):S45–S57. 10.1016/j.jhep.2014.07.027 - DOI - PubMed
    1. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117–171. 10.1016/S0140-6736(14)61682-2 - DOI - PMC - PubMed
    1. Feuerstadt P, Bunim AL, Garcia H, Karlitz JJ, Massoumi H, Thosani AJ, et al. Effectiveness of hepatitis C treatment with pegylated interferon and ribavirin in urban minority patients. Hepatology. 2010;51:1137–1143. 10.1002/hep.23429 - DOI - PubMed
    1. Fried MW. Side effects of therapy of hepatitis C and their management. Hepatology. 2002;36(5 Suppl 1):S237–S244. 10.1053/jhep.2002.36810 - DOI - PubMed
    1. Zeuzem S, Dusheiko GM, Salupere R, Mangia A, Flisiak R, Hyland RH, et al. Sofosbuvir and ribavirin in HCV genotypes 2 and 3. N Engl J Med. 2014;370:1993–2001. 10.1056/NEJMoa1316145 - DOI - PubMed

Publication types

MeSH terms