Robotic-assisted real-time MRI-guided TAVR: from system deployment to in vivo experiment in swine model
- PMID: 27246950
- PMCID: PMC6524142
- DOI: 10.1007/s11548-016-1421-4
Robotic-assisted real-time MRI-guided TAVR: from system deployment to in vivo experiment in swine model
Abstract
Purpose: Real-time magnetic resonance imaging (rtMRI) guidance provides significant advantages during transcatheter aortic valve replacement (TAVR) as it provides superior real-time visualization and accurate device delivery tracking. However, performing a TAVR within an MRI scanner remains difficult due to a constrained procedural environment. To address these concerns, a magnetic resonance (MR)-compatible robotic system to assist in TAVR deployments was developed. This study evaluates the technical design and interface considerations of an MR-compatible robotic-assisted TAVR system with the purpose of demonstrating that such a system can be developed and executed safely and precisely in a preclinical model.
Methods: An MR-compatible robotic surgical assistant system was built for TAVR deployment. This system integrates a 5-degrees of freedom (DoF) robotic arm with a 3-DoF robotic valve delivery module. A user interface system was designed for procedural planning and real-time intraoperative manipulation of the robot. The robotic device was constructed of plastic materials, pneumatic actuators, and fiber-optical encoders.
Results: The mechanical profile and MR compatibility of the robotic system were evaluated. The system-level error based on a phantom model was 1.14 ± 0.33 mm. A self-expanding prosthesis was successfully deployed in eight Yorkshire swine under rtMRI guidance. Post-deployment imaging and necropsy confirmed placement of the stent within 3 mm of the aortic valve annulus.
Conclusions: These phantom and in vivo studies demonstrate the feasibility and advantages of robotic-assisted TAVR under rtMRI guidance. This robotic system increases the precision of valve deployments, diminishes environmental constraints, and improves the overall success of TAVR.
Keywords: Cardiac surgery; MRI; Magnetic resonance; Robotic assistance; TAVR; Valve replacement.
Figures











References
-
- Cribier A, Eltchaninoff H, Bash A, Borenstein N, Tron C, Bauer F, Derumeaux G, Anselme F, Laborde F, Leon MB (2002) Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 106(24):3006–3008 - PubMed
-
- Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S, Investigators PT (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363(17):1597–1607. doi:10.1056/NEJMoa1008232 - DOI - PubMed
-
- D’Onofrio A, Rizzoli G, Messina A, Alfieri O, Lorusso R, Sal-izzoni S, Glauber M, Di Bartolomeo R, Besola L, Rinaldi M, Troise G, GerosaG (2013) Conventional surgery, sutureless valves, and transapical aortic valve replacement: what is the best option for patients with aortic valve stenosis? A multicenter, propensity-matched analysis. J Thorac Cardiovasc Surg 146(5):1065–1070. doi:10.1016/j.jtcvs.2013.06.047 (discussion 1070–1061) - DOI - PubMed
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical