Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jan 25:2:15222.
doi: 10.1038/nplants.2015.222.

Evolutionary patterns of genic DNA methylation vary across land plants

Affiliations

Evolutionary patterns of genic DNA methylation vary across land plants

Shohei Takuno et al. Nat Plants. .

Abstract

Little is known about patterns of genic DNA methylation across the plant kingdom or about the evolutionary processes that shape them. To characterize gene-body methylation (gbM) within exons, we have gathered single-base resolution methylome data that span the phylogenetic breadth of land plants. We find that a basal land plant, Marchantia polymorpha, lacks any evident signal of gbM within exons, but conifers have high levels of both CG and CHG (where H is A, C or T) methylation in expressed genes. To begin to understand the evolutionary forces that shape gbM, we first tested for correlations in methylation levels across orthologues(1,2). Genic CG methylation levels, but not CHG or CHH levels, are correlated across orthologues for species as distantly related as ferns and angiosperms. Hence, relative levels of CG methylation are a consistent property across genes, even for species that diverged ∼400 million years ago(3,4). In contrast, genic CHG methylation correlates with genome size, suggesting that the host epigenetic response to transposable elements also affects genes. Altogether, our data indicate that the evolutionary forces acting on DNA methylation vary substantially across species, genes and methylation contexts.

PubMed Disclaimer

Comment in

Publication types

Substances

LinkOut - more resources