Unraveling the mechanisms of chromatin fibril packaging
- PMID: 27249516
- PMCID: PMC4991243
- DOI: 10.1080/19491034.2016.1190896
Unraveling the mechanisms of chromatin fibril packaging
Abstract
Recent data indicate that eukaryotic chromosomes are organized into Topologically Associating Domains (TADs); however, the mechanisms underlying TAD formation remain obscure. Based on the results of Hi-C analysis performed on 4 Drosophila melanogaster cell lines, we have proposed that specific properties of nucleosomes in active and repressed chromatin play a key role in the formation of TADs. Our computer simulations showed that the ability of "inactive" nucleosomes to stick to each other and the lack of such ability in "active" nucleosomes is sufficient for spatial segregation of these types of chromatin, which is revealed in the Hi-C analysis as TAD/inter-TAD partitioning. However, some Drosophila and mammalian TADs contain both active and inactive chromatin, a fact that does not fit this model. Herein, we present additional arguments for the model by postulating that transcriptionally active chromatin is extruded on the surface of a TAD, and discuss the possible impact of this organization on the enhancer-promoter communication and on the segregation of TADs.
Keywords: chromatin spatial structure; nucleosome; polymer simulations; topologically associating domains; transcription.
Figures


Comment on
- Extra view to:Ulianov SV, Khrameeva EE, Gavrilov AA, Flyamer IM, Kos P, Mikhaleva EA, Penin AA, Logacheva MD, Imakaev MV, Chertovich A, et al. . Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res 2016; 26:70-84. PMID: ; http://dx.doi.org/10.1101/gr.196006.115
Similar articles
-
Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.Genome Res. 2016 Jan;26(1):70-84. doi: 10.1101/gr.196006.115. Epub 2015 Oct 30. Genome Res. 2016. PMID: 26518482 Free PMC article.
-
Quantitative differences in TAD border strength underly the TAD hierarchy in Drosophila chromosomes.J Cell Biochem. 2019 Mar;120(3):4494-4503. doi: 10.1002/jcb.27737. Epub 2018 Sep 27. J Cell Biochem. 2019. PMID: 30260021
-
3D genome evolution and reorganization in the Drosophila melanogaster species group.PLoS Genet. 2020 Dec 7;16(12):e1009229. doi: 10.1371/journal.pgen.1009229. eCollection 2020 Dec. PLoS Genet. 2020. PMID: 33284803 Free PMC article.
-
Multi-Scale Organization of the Drosophila melanogaster Genome.Genes (Basel). 2021 May 27;12(6):817. doi: 10.3390/genes12060817. Genes (Basel). 2021. PMID: 34071789 Free PMC article. Review.
-
Recent evidence that TADs and chromatin loops are dynamic structures.Nucleus. 2018 Jan 1;9(1):20-32. doi: 10.1080/19491034.2017.1389365. Epub 2017 Dec 14. Nucleus. 2018. PMID: 29077530 Free PMC article. Review.
Cited by
-
The 3D Genome: From Structure to Function.Int J Mol Sci. 2021 Oct 27;22(21):11585. doi: 10.3390/ijms222111585. Int J Mol Sci. 2021. PMID: 34769016 Free PMC article. Review.
-
Non-coding RNAs in chromatin folding and nuclear organization.Cell Mol Life Sci. 2021 Jul;78(14):5489-5504. doi: 10.1007/s00018-021-03876-w. Epub 2021 Jun 11. Cell Mol Life Sci. 2021. PMID: 34117518 Free PMC article. Review.
-
Gene functioning and storage within a folded genome.Cell Mol Biol Lett. 2017 Aug 29;22:18. doi: 10.1186/s11658-017-0050-4. eCollection 2017. Cell Mol Biol Lett. 2017. PMID: 28861108 Free PMC article. Review.
-
Comparison of genome architecture at two stages of male germline cell differentiation in Drosophila.Nucleic Acids Res. 2022 Apr 8;50(6):3203-3225. doi: 10.1093/nar/gkac109. Nucleic Acids Res. 2022. PMID: 35166842 Free PMC article.
-
Rice 3D chromatin structure correlates with sequence variation and meiotic recombination rate.Commun Biol. 2020 May 12;3(1):235. doi: 10.1038/s42003-020-0932-2. Commun Biol. 2020. PMID: 32398676 Free PMC article.
References
-
- Maeshima K, Ide S, Hibino K, Sasai M. Liquid-like behavior of chromatin. Curr Opin Genet Dev 2016; 37:36-45; PMID:26826680; http://dx.doi.org/10.1016/j.gde.2015.11.006 - DOI - PubMed
-
- Razin SV, Gavrilov AA. Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding. Epigenetics 2014; 9:653-7; PMID:24561903; http://dx.doi.org/10.4161/epi.28297 - DOI - PMC - PubMed
-
- Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, et al.. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009; 326:289-93; PMID:19815776; http://dx.doi.org/10.1126/science.1181369 - DOI - PMC - PubMed
-
- Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012; 485:376-80; PMID:22495300; http://dx.doi.org/10.1038/nature11082 - DOI - PMC - PubMed
-
- Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J, et al.. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012; 485:381-5; PMID:22495304; http://dx.doi.org/10.1038/nature11049 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases