Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun 1;8(341):341ra76.
doi: 10.1126/scitranslmed.aad3744.

A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease

Robert A Scott  1 Daniel F Freitag  2 Li Li  3 Audrey Y Chu  4 Praveen Surendran  5 Robin Young  5 Niels Grarup  6 Alena Stancáková  7 Yuning Chen  8 Tibor V Varga  9 Hanieh Yaghootkar  10 Jian'an Luan  11 Jing Hua Zhao  11 Sara M Willems  12 Jennifer Wessel  13 Shuai Wang  8 Nisa Maruthur  14 Kyriaki Michailidou  15 Ailith Pirie  15 Sven J van der Lee  16 Christopher Gillson  11 Ali Amin Al Olama  15 Philippe Amouyel  17 Larraitz Arriola  18 Dominique Arveiler  19 Iciar Aviles-Olmos  20 Beverley Balkau  21 Aurelio Barricarte  22 Inês Barroso  23 Sara Benlloch Garcia  15 Joshua C Bis  24 Stefan Blankenberg  25 Michael Boehnke  26 Heiner Boeing  27 Eric Boerwinkle  28 Ingrid B Borecki  29 Jette Bork-Jensen  6 Sarah Bowden  30 Carlos Caldas  31 Muriel Caslake  32 CVD50 consortiumL Adrienne Cupples  33 Carlos Cruchaga  34 Jacek Czajkowski  35 Marcel den Hoed  36 Janet A Dunn  37 Helena M Earl  38 Georg B Ehret  39 Ele Ferrannini  40 Jean Ferrieres  41 Thomas Foltynie  20 Ian Ford  32 Nita G Forouhi  11 Francesco Gianfagna  42 Carlos Gonzalez  43 Sara Grioni  44 Louise Hiller  37 Jan-Håkan Jansson  45 Marit E Jørgensen  46 J Wouter Jukema  47 Rudolf Kaaks  48 Frank Kee  49 Nicola D Kerrison  11 Timothy J Key  50 Jukka Kontto  51 Zsofia Kote-Jarai  52 Aldi T Kraja  35 Kari Kuulasmaa  51 Johanna Kuusisto  53 Allan Linneberg  54 Chunyu Liu  55 Gaëlle Marenne  56 Karen L Mohlke  57 Andrew P Morris  58 Kenneth Muir  59 Martina Müller-Nurasyid  60 Patricia B Munroe  61 Carmen Navarro  62 Sune F Nielsen  63 Peter M Nilsson  64 Børge G Nordestgaard  63 Chris J Packard  32 Domenico Palli  65 Salvatore Panico  66 Gina M Peloso  67 Markus Perola  68 Annette Peters  69 Christopher J Poole  70 J Ramón Quirós  71 Olov Rolandsson  72 Carlotta Sacerdote  73 Veikko Salomaa  51 María-José Sánchez  74 Naveed Sattar  32 Stephen J Sharp  11 Rebecca Sims  75 Nadia Slimani  76 Jennifer A Smith  77 Deborah J Thompson  15 Stella Trompet  47 Rosario Tumino  78 Daphne L van der A  79 Yvonne T van der Schouw  80 Jarmo Virtamo  51 Mark Walker  81 Klaudia Walter  56 GERAD_EC ConsortiumNeurology Working Group of the Cohorts for HeartAging Research in Genomic Epidemiology (CHARGE)Alzheimer’s Disease Genetics ConsortiumPancreatic Cancer Cohort ConsortiumEuropean Prospective Investigation into Cancer and Nutrition–Cardiovascular Disease (EPIC-CVD)EPIC-InterActJean E Abraham  82 Laufey T Amundadottir  83 Jennifer L Aponte  84 Adam S Butterworth  5 Josée Dupuis  8 Douglas F Easton  85 Rosalind A Eeles  86 Jeanette Erdmann  87 Paul W Franks  88 Timothy M Frayling  10 Torben Hansen  6 Joanna M M Howson  5 Torben Jørgensen  89 Jaspal Kooner  90 Markku Laakso  91 Claudia Langenberg  11 Mark I McCarthy  92 James S Pankow  93 Oluf Pedersen  6 Elio Riboli  94 Jerome I Rotter  95 Danish Saleheen  96 Nilesh J Samani  97 Heribert Schunkert  98 Peter Vollenweider  99 Stephen O'Rahilly  100 CHARGE consortiumCHD Exome+ ConsortiumCARDIOGRAM Exome ConsortiumPanos Deloukas  101 John Danesh  2 Mark O Goodarzi  102 Sekar Kathiresan  103 James B Meigs  104 Margaret G Ehm  84 Nicholas J Wareham  1 Dawn M Waterworth  105
Affiliations

A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease

Robert A Scott et al. Sci Transl Med. .

Abstract

Regulatory authorities have indicated that new drugs to treat type 2 diabetes (T2D) should not be associated with an unacceptable increase in cardiovascular risk. Human genetics may be able to guide development of antidiabetic therapies by predicting cardiovascular and other health endpoints. We therefore investigated the association of variants in six genes that encode drug targets for obesity or T2D with a range of metabolic traits in up to 11,806 individuals by targeted exome sequencing and follow-up in 39,979 individuals by targeted genotyping, with additional in silico follow-up in consortia. We used these data to first compare associations of variants in genes encoding drug targets with the effects of pharmacological manipulation of those targets in clinical trials. We then tested the association of those variants with disease outcomes, including coronary heart disease, to predict cardiovascular safety of these agents. A low-frequency missense variant (Ala316Thr; rs10305492) in the gene encoding glucagon-like peptide-1 receptor (GLP1R), the target of GLP1R agonists, was associated with lower fasting glucose and T2D risk, consistent with GLP1R agonist therapies. The minor allele was also associated with protection against heart disease, thus providing evidence that GLP1R agonists are not likely to be associated with an unacceptable increase in cardiovascular risk. Our results provide an encouraging signal that these agents may be associated with benefit, a question currently being addressed in randomized controlled trials. Genetic variants associated with metabolic traits and multiple disease outcomes can be used to validate therapeutic targets at an early stage in the drug development process.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Overall study design, participating studies, and consortia
Discovery analyses were performed using targeted exome sequencing of variation in six genes tested for association with seven traits. Variants were taken forward to follow-up by targeted genotyping. Additional in silico results were obtained using available association results. Combined results were obtained by fixed-effect meta-analysis of estimates from linear or logistic regression, as appropriate. Based on the 1331 statistical tests performed in discovery analyses, p<3.8×10-5 was used as the threshold for statistical significance. In targeted genotyping, (g) refers to studies that were directly genotyped for relevant markers, whereas (i) indicates those in which relevant variants were captured by imputation.
Figure 2
Figure 2. Association of GLP1R variant (rs10305492) with glycaemic traits
(A) Genetic variant association with glycaemic traits. Data are standard deviations per minor allele at rs10305492. Fasting glucose results are from the combined analysis (Table 1). Individual studies contributing to the associations for fasting insulin and 2-h glucose are in table S4. All results reflect point estimates and 95% confidence intervals (CI) from a fixed-effect meta-analysis of linear regression estimates. (B) Effect size of the GLP1R variant (in red) and loci previously reported to be associated with fasting glucose. Effect sizes are reported from discovery analyses of available MAGIC results (50), and from the combined estimate for the GLP1R variant in (A).
Figure 3
Figure 3. Comparison of GLP1R variant (rs10305492) associations with effects observed in clinical trials of GLP1R agonists in non-diabetic individuals and in individuals with T2D
Genetic associations are all scaled to match the effects of GLP1R-agonists on fasting glucose (i.e. per 3.3 copies of the minor (A) allele). Genetic variant results are beta estimates and 95% confidence intervals from fixed effect meta-analysis of linear regression results Trial results are estimates from fixed-effect meta-analyses of standardised mean differences between treatment and comparison groups of the individual trials listed in table S3. *Trials reported effects on body mass, whereas genetic associations were only available for BMI.
Figure 4
Figure 4. Association of GLP1R variant (rs10305492) with disease outcomes
Association with disease outcomes are reported per-minor allele at rs10305492. Data show odds ratios and 95% confidence intervals from logistic regression models.

References

    1. US FDA. Guidance for Industry Diabetes Mellitus — Evaluating Cardiovascular Risk in New Antidiabetic Therapies to Treat Type 2 Diabetes. 2008 http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformati....
    1. Plenge RM, Scolnick EM, Altshuler D. Validating therapeutic targets through human genetics. Nat Rev Drug Discov. 2013;12:581–594. - PubMed
    1. Nelson MR, Tipney H, Painter JL, Shen J, Nicoletti P, Shen Y, Floratos A, Sham PC, Li MJ, Wang J, Cardon LR, Whittaker JC, Sanseau P. The support of human genetic evidence for approved drug indications. Nat Genet. 2015;47:856–860. - PubMed
    1. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK, Hindy G, Hólm H, Ding EL, Johnson T, Schunkert H, Samani NJ, Clarke R, Hopewell JC, Thompson JF, Li M, Thorleifsson G, Newton-Cheh C, Musunuru K, Pirruccello JP, Saleheen D, Chen L, Stewart AFR, Schillert A, Thorsteinsdottir U, Thorgeirsson G, Anand S, Engert JC, Morgan T, Spertus J, Stoll M, Berger K, Martinelli N, Girelli D, McKeown PP, Patterson CC, Epstein SE, Devaney J, Burnett MS, Mooser V, Ripatti S, Surakka I, Nieminen MS, Sinisalo J, Lokki ML, Perola M, Havulinna A, de Faire U, Gigante B, Ingelsson E, Zeller T, Wild P, de Bakker PIW, Klungel OH, Maitland-van der Zee AH, Peters BJM, de Boer A, Grobbee DE, Kamphuisen PW, Deneer VHM, Elbers CC, Onland-Moret NC, Hofker MH, Wijmenga C, Verschuren WMM, a Boer JM, van der Schouw YT, Rasheed A, Frossard P, Demissie S, Willer C, Do R, Ordovas JM, Abecasis GR, Boehnke M, Mohlke KL, Daly MJ, Guiducci C, Burtt NP, Surti A, Gonzalez E, Purcell S, Gabriel S, Marrugat J, Peden J, Erdmann J, Diemert P, Willenborg C, König IR, Fischer M, Hengstenberg C, Ziegler A, Buysschaert I, Lambrechts D, Van de Werf F, Fox Ka, El Mokhtari NE, Rubin D, Schrezenmeir J, Schreiber S, Schäfer A, Danesh J, Blankenberg S, Roberts R, McPherson R, Watkins H, Hall AS, Overvad K, Rimm E, Boerwinkle E, Tybjaerg-Hansen A, Cupples LA, Reilly MP, Melander O, Mannucci PM, Ardissino D, Siscovick D, Elosua R, Stefansson K, O'Donnell CJ, Salomaa V, Rader DJ, Peltonen L, Schwartz SM, Altshuler D, Kathiresan S. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–80. - PMC - PubMed
    1. Zacho J, Tybjaerg-Hansen A, Jensen JS, Grande P, Sillesen H, Nordestgaard BG. Genetically elevated C-reactive protein and ischemic vascular disease. N Engl J Med. 2008;359:1897–1908. - PubMed

Publication types

MeSH terms

Grants and funding