Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May 24:8:108.
doi: 10.3389/fnagi.2016.00108. eCollection 2016.

In Alzheimer's Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial

Affiliations

In Alzheimer's Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial

Michael Gejl et al. Front Aging Neurosci. .

Abstract

In animal models, the incretin hormone GLP-1 affects Alzheimer's disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [(11)C]PIB (PIB), CMRglc with [(18)F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMRglc declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMRglc after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMRglc that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered.

Keywords: Alzheimer’s disease; amyloid; cerebral glucose metabolism; glucagon-like peptide-1; liraglutide.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
(A) Percentage change in Binding Potential in the brain (BPND) between baseline scan and 6-month follow-up. (B) Binding Potential in the brain (BPND) in the cingulate cortex, precuneus, frontal, parietal, temporal, and occipital lobes, cerebellum and cerebral cortex at baseline and the Ratio Session 2/1 in the placebo group and the liraglutide group.P < 0.05.
FIGURE 2
FIGURE 2
(A) Percentage change in cerebral metabolic rate for glucose (CMRglc) between baseline scan and 6-month follow-up. (B) Cerebral metabolic rate for glucose uptake (CMRglc) in the cingulate cortex, precuneus, frontal, parietal, temporal, and occipital lobes, cerebellum, and cerebral cortex at baseline and the Ratio Session 2/1 in the placebo group and the liraglutide group. P < 0.05.

References

    1. Ahren B., Winzell M. S., Wierup N., Sundler F., Burkey B., Hughes T. E. (2007). DPP-4 inhibition improves glucose tolerance and increases insulin and GLP-1 responses to gastric glucose in association with normalized islet topography in mice with beta-cell-specific overexpression of human islet amyloid polypeptide. Regul. Pept. 143 97–103. 10.1016/j.regpep.2007.03.008 - DOI - PubMed
    1. Alexander G. E., Chen K., Pietrini P., Rapoport S. I., Reiman E. M. (2002). Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in alzheimer’s disease treatment studies. Am. J. Psychiatry 159 738–745. 10.1176/appi.ajp.159.5.738 - DOI - PubMed
    1. Bomfim T. R., Forny-Germano L., Sathler L. B., Brito-Moreira J., Houzel J. C., Decker H., et al. (2012). An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J. Clin. Invest. 122 1339–1353. 10.1172/JCI57256 - DOI - PMC - PubMed
    1. Craft S., Baker L. D., Montine T. J., Minoshima S., Watson G. S., Claxton A., et al. (2012). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch. Neurol. 69 29–38. 10.1001/archneurol.2011.233 - DOI - PMC - PubMed
    1. Dubois B., Feldman H. H., Jacova C., Hampel H., Molinuevo J. L., Blennow K., et al. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 13 614–629. 10.1016/S1474-4422(14)70090-0 - DOI - PubMed

Associated data