Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jul;21(4):1133-1145.
doi: 10.1109/JBHI.2016.2574857. Epub 2016 Jun 1.

Discovery and Clinical Decision Support for Personalized Healthcare

Free article

Discovery and Clinical Decision Support for Personalized Healthcare

Jinsung Yoon et al. IEEE J Biomed Health Inform. 2017 Jul.
Free article

Abstract

With the advent of electronic health records, more data are continuously collected for individual patients, and more data are available for review from past patients. Despite this, it has not yet been possible to successfully use this data to systematically build clinical decision support systems that can produce personalized clinical recommendations to assist clinicians in providing individualized healthcare. In this paper, we present a novel approach, discovery engine (DE), that discovers which patient characteristics are most relevant for predicting the correct diagnosis and/or recommending the best treatment regimen for each patient. We demonstrate the performance of DE in two clinical settings: diagnosis of breast cancer as well as a personalized recommendation for a specific chemotherapy regimen for breast cancer patients. For each distinct clinical recommendation, different patient features are relevant; DE can discover these different relevant features and use them to recommend personalized clinical decisions. The DE approach achieves a 16.6% improvement over existing state-of-the-art recommendation algorithms regarding kappa coefficients for recommending the personalized chemotherapy regimens. For diagnostic predictions, the DE approach achieves a 2.18% and 4.20% improvement over existing state-of-the-art prediction algorithms regarding prediction error rate and false positive rate, respectively. We also demonstrate that the performance of our approach is robust against missing information and that the relevant features discovered by DE are confirmed by clinical references.

PubMed Disclaimer

Publication types