Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Aug 15:156-157:119-125.
doi: 10.1016/j.talanta.2016.05.020. Epub 2016 May 7.

Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples

Affiliations

Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples

Carla M Ribeiro et al. Talanta. .

Abstract

Chlorogenic acid (CGA) is a polyphenol derivative that widely exists in higher plants like fruits, vegetables, black teas, and some traditional Chinese medicines. In this work, we have proposed a sensitive and selective electrochemical sensor for detection of CGA. The sensor was based on a glassy carbon electrode (GCE) modified with a functional platform by grafting vinyltrimethoxysilane (VTMS) in multi-walled carbon nanotubes (MWCNTs) and covered by a molecularly imprinted siloxane (MIS) film prepared using the sol-gel process. The VTMS was grafted onto the surface of the MWCNTs via in situ free radical polymerization. The MIS was obtained from the acid-catalyzed hydrolysis/condensation of a solution consisting of tetraethoxysilane (TEOS), phenyltriethoxysilane (PTEOS), (3-aminopropyl)trimethoxysilane (APTMS), and CGA as a template molecule. The modification procedure was evaluated by differential pulse voltammetry (DPV) and scanning electron microscopy (SEM). Under optimized operational conditions, a linear response was obtained covering a concentration ranging from 0.08μmolL(-1) to 500μmolL(-1) with a detection limit (LOD) of 0.032μmolL(-1). The proposed sensor was applied to CGA determination in coffee, tomato, and apple samples with recoveries ranging from 99.3% to 108.6%, showing a promising potential application in food samples. Additionally, the imprinted sensor showed a significantly higher affinity for target CGA than the non-imprinted siloxane (NIS) sensor.

Keywords: Chlorogenic acid; MWCNTs; Molecular imprinting siloxane; Sol-gel.

PubMed Disclaimer

LinkOut - more resources