Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae
- PMID: 27261007
- PMCID: PMC4978902
- DOI: 10.1534/g3.116.030346
Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae
Abstract
The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both cryptic intragenic transcription and the Suppressor of Ty (Spt(-)) phenotype for the lys2-128∂ allele of the LYS2 gene. Mutants that suppress lys2-128∂ allow transcription from a normally inactive Ty1 ∂ promoter, conferring a LYS(+) phenotype. The arrangement of transcription units at lys2-128∂ is reminiscent of genes containing cryptic promoters within their open reading frames. We set out to examine the relationship between RNA Polymerase II (Pol II) activity, functions of Spt elongation factors, and cryptic transcription because of the previous observation that increased-activity Pol II alleles confer an Spt(-) phenotype. We identify both cooperating and antagonistic genetic interactions between Pol II alleles and alleles of elongation factors SPT4, SPT5, and SPT6 We find that cryptic transcription at FLO8 and STE11 is distinct from that at lys2-128∂, though all show sensitivity to reduction in Pol II activity, especially the expression of lys2-128∂ found in Spt(-) mutants. We determine that the lys2-128∂ Spt(-) phenotypes for spt6-1004 and increased activity rpo21/rpb1 alleles each require transcription from the LYS2 promoter. Furthermore, we identify the Ty1 transcription start site (TSS) within the ∂ element as the position of Spt(-) transcription in tested Spt(-) mutants.
Keywords: Ty1 element; cryptic transcription; gene expression; transcription elongation; transcription initiation.
Copyright © 2016 Cui et al.
Figures












Similar articles
-
Core promoter activity contributes to chromatin-based regulation of internal cryptic promoters.Nucleic Acids Res. 2021 Aug 20;49(14):8097-8109. doi: 10.1093/nar/gkab639. Nucleic Acids Res. 2021. PMID: 34320189 Free PMC article.
-
Transcription elongation factors repress transcription initiation from cryptic sites.Science. 2003 Aug 22;301(5636):1096-9. doi: 10.1126/science.1087374. Science. 2003. PMID: 12934008
-
The Histone Chaperones FACT and Spt6 Restrict H2A.Z from Intragenic Locations.Mol Cell. 2015 Jun 18;58(6):1113-23. doi: 10.1016/j.molcel.2015.03.030. Epub 2015 May 7. Mol Cell. 2015. PMID: 25959393 Free PMC article.
-
Insights into Spt6: a histone chaperone that functions in transcription, DNA replication, and genome stability.Trends Genet. 2023 Nov;39(11):858-872. doi: 10.1016/j.tig.2023.06.008. Epub 2023 Jul 20. Trends Genet. 2023. PMID: 37481442 Free PMC article. Review.
-
The Paf1 complex: platform or player in RNA polymerase II transcription?Biochim Biophys Acta. 2010 May-Jun;1799(5-6):379-88. doi: 10.1016/j.bbagrm.2010.01.001. Epub 2010 Jan 12. Biochim Biophys Acta. 2010. PMID: 20060942 Free PMC article. Review.
Cited by
-
RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease.J Mol Biol. 2025 Jan 1;437(1):168770. doi: 10.1016/j.jmb.2024.168770. Epub 2024 Aug 28. J Mol Biol. 2025. PMID: 39214283 Free PMC article. Review.
-
Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction.Cell Rep. 2018 Dec 18;25(12):3476-3489.e5. doi: 10.1016/j.celrep.2018.11.089. Cell Rep. 2018. PMID: 30566871 Free PMC article.
-
Wide-ranging and unexpected consequences of altered Pol II catalytic activity in vivo.Nucleic Acids Res. 2017 May 5;45(8):4431-4451. doi: 10.1093/nar/gkx037. Nucleic Acids Res. 2017. PMID: 28119420 Free PMC article.
-
High-Resolution Phenotypic Landscape of the RNA Polymerase II Trigger Loop.PLoS Genet. 2016 Nov 29;12(11):e1006321. doi: 10.1371/journal.pgen.1006321. eCollection 2016 Nov. PLoS Genet. 2016. PMID: 27898685 Free PMC article.
-
Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription.Mol Cell. 2018 Jun 21;70(6):1054-1066.e4. doi: 10.1016/j.molcel.2018.05.020. Mol Cell. 2018. PMID: 29932900 Free PMC article.
References
-
- Amberg D. C., Burke D. J., Strathern J. N., 2005. Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual, 2005 Edition Cold Spring Harbor Press, Cold Spring Harbor, NY.
-
- Boeke J. D., Trueheart J., Natsoulis G., Fink G. R., 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154: 164–175. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases