Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation
- PMID: 27266957
- PMCID: PMC4968910
- DOI: 10.1080/15384101.2016.1191706
Metformin is also effective on lactic acidosis-exposed melanoma cells switched to oxidative phosphorylation
Abstract
Low extracellular pH promotes in melanoma cells a malignant phenotype characterized by an epithelial-to-mesenchymal transition (EMT) program, endowed with mesenchymal markers, high invasiveness and pro-metastatic property. Here, we demonstrate that melanoma cells exposed to an acidic extracellular microenvironment, 6.7±0.1, shift to an oxidative phosphorylation (Oxphos) metabolism. Metformin, a biguanide commonly used for type 2 diabetes, inhibited the most relevant features of acid-induced phenotype, including EMT and Oxphos. When we tested effects of lactic acidosis, to verify whether sodium lactate might have additional effects on acidic melanoma cells, we found that EMT and Oxphos also characterized lactic acid-treated cells. An increased level of motility was the only gained property of lactic acidic-exposed melanoma cells. Metformin treatment inhibited both EMT markers and Oxphos and, when its concentration raised to 10 mM, it induced a striking inhibition of proliferation and colony formation of acidic melanoma cells, both grown in protons enriched medium or lactic acidosis. Thus, our study provides the first evidence that metformin may target either proton or lactic acidosis-exposed melanoma cells inhibiting EMT and Oxphox metabolism. These findings disclose a new potential rationale of metformin addition to advanced melanoma therapy, e.g. targeting acidic cell subpopulation.
Keywords: Acidic microenvironment; cell metabolism; lactic acidosis; melanoma cells; metformin.
Figures







Similar articles
-
The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells.J Mol Med (Berl). 2020 Oct;98(10):1431-1446. doi: 10.1007/s00109-020-01959-y. Epub 2020 Aug 15. J Mol Med (Berl). 2020. PMID: 32803272 Free PMC article.
-
Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression.Cell Cycle. 2015;14(19):3088-100. doi: 10.1080/15384101.2015.1078032. Cell Cycle. 2015. PMID: 26496168 Free PMC article.
-
Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.Oncotarget. 2016 Jun 28;7(26):40621-40629. doi: 10.18632/oncotarget.9746. Oncotarget. 2016. PMID: 27259254 Free PMC article.
-
Biguanide-associated lactic acidosis. Case report and review of the literature.Arch Intern Med. 1992 Nov;152(11):2333-6. doi: 10.1001/archinte.152.11.2333. Arch Intern Med. 1992. PMID: 1444694 Review.
-
[Traditional contraindications to the use of metformin -- more harmful than beneficial?].Dtsch Med Wochenschr. 2006 Jan 20;131(3):105-10. doi: 10.1055/s-2006-924934. Dtsch Med Wochenschr. 2006. PMID: 16418951 Review. German.
Cited by
-
Epithelial-mesenchymal transition inhibition by metformin reduces melanoma lung metastasis in a murine model.Sci Rep. 2022 Oct 22;12(1):17776. doi: 10.1038/s41598-022-22235-8. Sci Rep. 2022. PMID: 36273071 Free PMC article.
-
SOX2 as a novel contributor of oxidative metabolism in melanoma cells.Cell Commun Signal. 2018 Nov 22;16(1):87. doi: 10.1186/s12964-018-0297-z. Cell Commun Signal. 2018. PMID: 30466459 Free PMC article.
-
Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis.J Mol Med (Berl). 2017 Dec;95(12):1341-1353. doi: 10.1007/s00109-017-1590-9. Epub 2017 Sep 19. J Mol Med (Berl). 2017. PMID: 28929255
-
Antitumor Therapy Targeting the Tumor Microenvironment.J Oncol. 2023 Mar 3;2023:6886135. doi: 10.1155/2023/6886135. eCollection 2023. J Oncol. 2023. PMID: 36908706 Free PMC article. Review.
-
Phase I study of metformin in combination with carboplatin/paclitaxel chemotherapy in patients with advanced epithelial ovarian cancer.Invest New Drugs. 2020 Oct;38(5):1454-1462. doi: 10.1007/s10637-020-00920-7. Epub 2020 Mar 7. Invest New Drugs. 2020. PMID: 32146550 Free PMC article. Clinical Trial.
References
-
- Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004; 4:891-9; PMID:15516961; http://dx.doi.org/10.1038/nrc1478 - DOI - PubMed
-
- Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324:1029-33; PMID:19460998; http://dx.doi.org/10.1126/science.1160809 - DOI - PMC - PubMed
-
- Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, Townsend DW, Berland LL, Parker JA, Hubner K, et al.. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 2006; 47:885-95; PMID:16644760 - PubMed
-
- Denko NC. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8:705-713; PMID:19143055; http://dx.doi.org/10.1038/nrc2468 - DOI - PubMed
-
- Spugnini EP, Sonveaux P, Stock C, Perez-Sayans M, De Milito A, Avnet S, Garcìa AG, Harguindey S, Fais S. Proton channels and exchangers in cancer. Biochim Biophys Acta 2015; 1848:2715-26; PMID:25449995; http://dx.doi.org/10.1016/j.bbamem.2014.10.015 - DOI - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical