Genome editing and the next generation of antiviral therapy
- PMID: 27272125
- PMCID: PMC5002242
- DOI: 10.1007/s00439-016-1686-2
Genome editing and the next generation of antiviral therapy
Abstract
Engineered endonucleases such as homing endonucleases (HEs), zinc finger nucleases (ZFNs), Tal-effector nucleases (TALENS) and the RNA-guided engineered nucleases (RGENs or CRISPR/Cas9) can target specific DNA sequences for cleavage, and are proving to be valuable tools for gene editing. Recently engineered endonucleases have shown great promise as therapeutics for the treatment of genetic disease and infectious pathogens. In this review, we discuss recent efforts to use the HE, ZFN, TALEN and CRISPR/Cas9 gene-editing platforms as antiviral therapeutics. We also discuss the obstacles facing gene-editing antiviral therapeutics as they are tested in animal models of disease and transition towards human application.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
References
-
- Aubert M, Boyle NM, Stone D, Stensland L, Huang ML, Magaret AS, Galetto R, Rawlings DJ, Scharenberg AM, Jerome KR. In vitro inactivation of latent HSV by targeted mutagenesis using an HSV-specific homing endonuclease. Mol Ther Nucleic Acids. 2014;3:e146. doi: 10.1038/mtna.2013.75. - DOI - PMC - PubMed
-
- Barese CN, Felizardo TC, Sellers SE, Keyvanfar K, Di Stasi A, Metzger ME, Krouse AE, Donahue RE, Spencer DM, Dunbar CE. Regulated apoptosis of genetically modified hematopoietic stem and progenitor cells via an inducible caspase-9 suicide gene in rhesus macaques. Stem Cells. 2015;33:91–100. doi: 10.1002/stem.1869. - DOI - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
