Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Sep 1:41:75-85.
doi: 10.1016/j.actbio.2016.06.010. Epub 2016 Jun 7.

IGF-1-containing multi-layered collagen-fibrin hybrid scaffolds for bladder tissue engineering

Affiliations

IGF-1-containing multi-layered collagen-fibrin hybrid scaffolds for bladder tissue engineering

E Vardar et al. Acta Biomater. .

Abstract

Clinical success of bladder reconstructive procedures could be promoted by the availability of functional biomaterials. In this study, we have developed a multi-layered scaffold consisting of a bioactive fibrin layer laminated between two collagen sheets all having undergone plastic compression. With this construct we performed bladder augmentation in a nude rat model after partial bladder excision and evaluated the morphological and functional behavior of the implant. The fibrin was functionalized with a recombinant human insulin-like growth factor-1 (IGF-1) variant that covalently binds fibrin during polymerization and has a matrix metalloproteinase-cleavage insert to enable cell-mediated release. The purified IGF-1 variant showed similar bioactivity in vitro compared to commercially available wild type (wt) IGF-1, inducing receptor phosphorylation and induction of human smooth muscle cell proliferation. In vivo, the multi-layered bioactive collagen-fibrin scaffolds loaded with the IGF-1 variant triggered dose-dependent functional host smooth muscle cell invasion and bundle formation with re-urothelialization 4weeks after surgery in a rat model.

Statement of significance: The design of new bio-functional scaffolds that can be employed for bladder reconstructive procedures is a growing focus in the field of tissue engineering. In this study, a fibrin binding form of human insulin-like growth factor-1 (IGF-1) was produced and used to functionalize a multi-layered collagen-fibrin scaffold consisting of bioactive fibrin layer, sandwiched between two collagen gels. An effective dosage of our IGF-1 variant was successfully determined via a nude rat bladder model, which may play a critical role in estimating its therapeutic dosage in clinical trials. Thus, this new bioactive scaffold may offer an advanced approach to accelerate bladder regeneration.

Keywords: Bladder regeneration; Collagen; Fibrin; Human insulin-like growth factor-1.

PubMed Disclaimer

Publication types