Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun;149(6):e161-7.
doi: 10.1016/j.chest.2015.12.032.

Transpleural Ventilation via Spiracles in Severe Emphysema Increases Alveolar Ventilation

Affiliations

Transpleural Ventilation via Spiracles in Severe Emphysema Increases Alveolar Ventilation

Mayy Chahla et al. Chest. 2016 Jun.

Abstract

In emphysema airway resistance can exceed collateral airflow resistance, causing air to flow preferentially through collateral pathways. In severe emphysema ventilation through openings directly through the chest wall into the parenchyma (spiracles) could bypass airway obstruction and increase alveolar ventilation via transpleural expiration. During lung transplant operations, spiracles occasionally can occur inadvertently. We observed transpleural expiration via spiracles in three subjects undergoing lung transplant for emphysema. During transpleural spiracle ventilation, inspiratory tidal volumes (TV) were unchanged; however, expiration was entirely transpleural in two patients whereas the expired TV to the ventilator circuit was reduced to 25% of the inspired TV in one. At baseline, mean PCO2 was 61 ± 5 mm Hg, which decreased to a mean PCO2 of 49 ± 5 mm Hg (P = .05) within minutes after transpleural spiracle ventilation and further decreased at 1 to 2 h (36 ± 4 mm Hg; P = .002 compared with baseline) on unchanged ventilator settings. This observation of increased alveolar ventilation supports further studies of spiracles as a possible therapy for advanced emphysema.

Keywords: chronic obstructive pulmonary disease; collateral ventilation; emphysema; lung transplant; mechanical ventilation; physiology; spiracle; transpleural ventilation.

PubMed Disclaimer

MeSH terms