Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct:109:183-195.
doi: 10.1016/j.neuropharm.2016.06.007. Epub 2016 Jun 7.

Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice

Affiliations

Knockout of P-glycoprotein does not alter antiepileptic drug efficacy in the intrahippocampal kainate model of mesial temporal lobe epilepsy in mice

Marion Bankstahl et al. Neuropharmacology. 2016 Oct.

Abstract

Pharmacoresistance to antiepileptic drugs (AEDs) is a major challenge in epilepsy therapy, affecting at least 30% of patients. Thus, there is considerable interest in the mechanisms responsible for such pharmacoresistance, with particular attention on the specific cellular and molecular factors that lead to reduced drug sensitivity. Current hypotheses of refractory epilepsy include the multidrug transporter hypothesis, which posits that increased expression or function of drug efflux transporters, such as P-glycoprotein (Pgp), in brain capillaries reduces the local concentration of AEDs in epileptic brain regions to subtherapeutic levels. In the present study, this hypothesis was addressed by evaluating the efficacy of six AEDs in wildtype and Pgp deficient Mdr1a/b(-/-) mice in the intrahippocampal kainate model of mesial temporal lobe epilepsy. In this model, frequent focal electrographic seizures develop after an initial kainate-induced status epilepticus. These seizures are resistant to major AEDs, but the mechanisms of this resistance are unknown. In the present experiments, the focal nonconvulsive seizures were resistant to carbamazepine and phenytoin, whereas high doses of valproate and levetiracetam exerted moderate and phenobarbital and diazepam marked anti-seizure effects. All AEDs suppressed generalized convulsive seizures. No significant differences between wildtype and Pgp-deficient mice were observed in anti-seizure drug efficacies. Also, the individual responder and nonresponder rates in each experiment did not differ between mouse genotypes. This does not argue against the multidrug transporter hypothesis in general, but indicates that Pgp is not involved in the mechanisms explaining that focal electrographic seizures are resistant to some AEDs in the intrahippocampal mouse model of partial epilepsy. This was substantiated by the finding that epileptic wildtype mice do not exhibit increased Pgp expression in this model.

Keywords: Carbamazepine (PubChem CID: 2554); Diazepam (PubChem CID: 3016); Hippocampus; Intrinsic severity hypothesis; Levetiracetam (PubChem CID: 5284583); Mdr1; Multidrug transporters; Phenobarbital (PubChem CID: 4763); Phenytoin (PubChem CID: 1775); Seizures; Valproate (PubChem CID: 3121).

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources