Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Nov:100:81-85.
doi: 10.1016/j.freeradbiomed.2016.06.005. Epub 2016 Jun 11.

Functional role of mitochondrial reactive oxygen species in physiology

Affiliations
Review

Functional role of mitochondrial reactive oxygen species in physiology

Plamena R Angelova et al. Free Radic Biol Med. 2016 Nov.

Abstract

The major energy generator in the cell - mitochondria produce reactive oxygen species as a by-product of a number of enzymatic reactions and the production of ATP. Emerging evidence suggests that mitochondrial ROS regulate diverse physiological parameters and that dysregulated ROS signalling may contribute to a development of processes which lead to human diseases. ROS produced in mitochondrial enzymes are triggers of monoamine-induced calcium signal in astrocytes, playing important role in physiological and pathophysiological response to dopamine. Generation of ROS in mitochondria leads to peroxidation of lipids, which is considered to be one of the most important mechanisms of cell injury under condition of oxidative stress. However, it also can induce activation of mitochondrial and cellular phospholipases that can trigger a variety of the signals - from activation of ion channels to stimulation of calcium signal. Mitochondria are shown to be the oxygen sensor in astrocytes, therefore inhibition of respiration by hypoxia induces ROS production which leads to lipid peroxidation, activation of phospholipase C and induction of IP3-mediated calcium signal. Propagation of astrocytic calcium signal stimulates breathing activity in response to hypoxia. Thus, ROS produced by mitochondrial enzymes or electron transport chain can be used as a trigger for signalling cascades in central nervous system and deregulation of this process leads to pathology.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources