Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun 13:16:504.
doi: 10.1186/s12889-016-3184-9.

Impact of altering proximity on snack food intake in individuals with high and low executive function: study protocol

Affiliations

Impact of altering proximity on snack food intake in individuals with high and low executive function: study protocol

Jennifer A Hunter et al. BMC Public Health. .

Abstract

Background: Despite attempts to improve diet at population level, people living in material and social deprivation continue to consume unhealthy diets. Executive function - the ability to regulate behaviour and resist impulses - is weaker in individuals living in deprivation. Dietary interventions that educate and persuade people to reflect on and actively change behaviour may therefore disproportionately benefit individuals who are socioeconomically advantaged and have stronger executive function, thus exacerbating inequalities in health resulting from unhealthy diets. In contrast, manipulating environmental cues, such as how far away a food is placed, does not appeal to reasoned action and is thought to operate largely outside of awareness to influence behaviour. People eat more of a food when it is placed closer to them, an effect seemingly robust to context, food quality and body-weight status. However, previous studies of this 'proximity effect' are limited by small samples consisting mainly of university staff or students, biased towards higher socio-economic position and therefore likely stronger executive function. This study aims to test the hypothesis that placing food further away from a person decreases intake of that food regardless of executive function.

Methods/design: 156 members of the general public, recruited from low and high socio-economic groups, will be randomised to one of two conditions varying in the proximity of a snack food relative to their position: 20 cm or 70 cm. Participants are told they will be taking part in a relaxation study - and are fully debriefed at the conclusion of the session. The primary outcome is the proportion of participants eating any amount of snack food and the secondary outcome is the mean amount eaten. Executive function is assessed using the Stroop task.

Discussion: The proposed study takes a novel step by investigating the effect of proximity on snack food intake in a general population sample consisting of those with high and low executive function, appropriately powered to detect the predicted proximity effect. If this effect occurs irrespective of executive function and socio-economic position, it may have potential to reduce inequalities patterned by socio-economic position if implemented in real-world settings such as shops or restaurants.

Trial registration: Registered with the ISRCTN registry: ISRCTN46995850 on 07 October 2015.

Keywords: Dietary behaviour; Executive function; Placement; Proximity; Snack food; Socio-economic position.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Map of testing room. The laptop is removed from the room during the relaxation period; the bowl and magazines are removed during testing periods while the laptop is being used
Fig. 2
Fig. 2
Snack food presentation. The left image shows the distal condition and the right image shows the proximal condition during the relaxation break. Images are taken from the participant’s perspective

References

    1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60. doi: 10.1016/S0140-6736(12)61766-8. - DOI - PMC - PubMed
    1. Stringhini S, Severine S, Shipley M, Brunner E, Nabi H, Kivimaki M, et al. Association of socioeconomic position with health behaviors and mortality. Jama. 2010;303(12):1159–66. doi: 10.1001/jama.2010.297. - DOI - PMC - PubMed
    1. McGill R, Anwar E, Orton L, Bromley H, Lloyd-Williams F, O’Flaherty M, et al. Are interventions to promote healthy eating equally effective for all? Systematic review of socioeconomic inequalities in impact. BMC Public Health. 2015;15(1):457. doi: 10.1186/s12889-015-1781-7. - DOI - PMC - PubMed
    1. Beauchamp A, Backholer K, Magliano D, Peeters A. The effect of obesity prevention interventions according to socioeconomic position: a systematic review. Obes Rev. 2014;15(7):541–54. doi: 10.1111/obr.12161. - DOI - PubMed
    1. Lorenc T, Petticrew M, Welch V, Tugwell P. What types of interventions generate inequalities? Evidence from systematic reviews. J Epidemiol Community Health. 2013;67(2):190–3. doi: 10.1136/jech-2012-201257. - DOI - PubMed

Associated data

LinkOut - more resources