Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2016 Nov;48(11):2165-2174.
doi: 10.1249/MSS.0000000000001007.

The Effect of Different High-Intensity Periodization Models on Endurance Adaptations

Affiliations
Randomized Controlled Trial

The Effect of Different High-Intensity Periodization Models on Endurance Adaptations

Øystein Sylta et al. Med Sci Sports Exerc. 2016 Nov.

Abstract

Purpose: This study aimed to compare the effects of three different high-intensity training (HIT) models, balanced for total load but differing in training plan progression, on endurance adaptations.

Methods: Sixty-three cyclists (peak oxygen uptake (V˙O2peak) 61.3 ± 5.8 mL·kg·min) were randomized to three training groups and instructed to follow a 12-wk training program consisting of 24 interval sessions, a high volume of low-intensity training, and laboratory testing. The increasing HIT group (n = 23) performed interval training as 4 × 16 min in weeks 1-4, 4 × 8 min in weeks 5-8, and 4 × 4 min in weeks 9-12. The decreasing HIT group (n = 20) performed interval sessions in the opposite mesocycle order as the increasing HIT group, and the mixed HIT group (n = 20) performed the interval prescriptions in a mixed distribution in all mesocycles. Interval sessions were prescribed as maximal session efforts and executed at mean values 4.7, 9.2, and 12.7 mmol·L blood lactate in 4 × 16-, 4 × 8-, and 4 × 4-min sessions, respectively (P < 0.001). Pre- and postintervention, cyclists were tested for mean power during a 40-min all-out trial, peak power output during incremental testing to exhaustion, V˙O2peak, and power at 4 mmol·L lactate.

Results: All groups improved 5%-10% in mean power during a 40-min all-out trial, peak power output, and V˙O2peak postintervention (P < 0.05), but no adaptation differences emerged among the three training groups (P > 0.05). Further, an individual response analysis indicated similar likelihood of large, moderate, or nonresponses, respectively, in response to each training group (P > 0.05).

Conclusions: This study suggests that organizing different interval sessions in a specific periodized mesocycle order or in a mixed distribution during a 12-wk training period has little or no effect on training adaptation when the overall training load is the same.

PubMed Disclaimer

Publication types

LinkOut - more resources