The thermal and electrical properties of the promising semiconductor MXene Hf2CO2
- PMID: 27302597
- PMCID: PMC4908405
- DOI: 10.1038/srep27971
The thermal and electrical properties of the promising semiconductor MXene Hf2CO2
Abstract
With the growing interest in low dimensional materials, MXenes have also attracted considerable attention recently. In this work, the thermal and electrical properties of oxygen-functionalized M2CO2 (M = Ti, Zr, Hf) MXenes are investigated using first-principles calculations. Hf2CO2 is determined to exhibit a thermal conductivity better than MoS2 and phosphorene. The room-temperature thermal conductivity along the armchair direction is determined to be 86.25~131.2 Wm(-1) K(-1) with a flake length of 5~100 μm. The room temperature thermal expansion coefficient of Hf2CO2 is 6.094 × 10(-6) K(-1), which is lower than that of most metals. Moreover, Hf2CO2 is determined to be a semiconductor with a band gap of 1.657 eV and to have high and anisotropic carrier mobility. At room temperature, the Hf2CO2 hole mobility in the armchair direction (in the zigzag direction) is determined to be as high as 13.5 × 10(3) cm(2)V(-1)s(-1) (17.6 × 10(3) cm(2)V(-1)s(-1)). Thus, broader utilization of Hf2CO2, such as the material for nanoelectronics, is likely. The corresponding thermal and electrical properties of Ti2CO2 and Zr2CO2 are also provided. Notably, Ti2CO2 presents relatively lower thermal conductivity but much higher carrier mobility than Hf2CO2. According to the present results, the design and application of MXene based devices are expected to be promising.
Figures






Similar articles
-
Promising electron mobility and high thermal conductivity in Sc2CT2 (T = F, OH) MXenes.Nanoscale. 2016 Mar 21;8(11):6110-7. doi: 10.1039/c5nr08639f. Nanoscale. 2016. PMID: 26932122
-
Prediction of MXene based 2D tunable band gap semiconductors: GW quasiparticle calculations.Nanoscale. 2019 Mar 7;11(9):3993-4000. doi: 10.1039/c9nr01160a. Epub 2019 Feb 15. Nanoscale. 2019. PMID: 30768118
-
The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers.Nanoscale. 2018 May 10;10(18):8859-8868. doi: 10.1039/c7nr09144c. Nanoscale. 2018. PMID: 29714796
-
First-principles study on the electrical and thermal properties of the semiconducting Sc3(CN)F2 MXene.RSC Adv. 2018 Jun 19;8(40):22452-22459. doi: 10.1039/c8ra03424a. eCollection 2018 Jun 19. RSC Adv. 2018. PMID: 35539724 Free PMC article.
-
A comprehensive review on MXenes as new nanomaterials for degradation of hazardous pollutants: Deployment as heterogeneous sonocatalysis.Chemosphere. 2022 Jan;287(Pt 4):132387. doi: 10.1016/j.chemosphere.2021.132387. Epub 2021 Sep 29. Chemosphere. 2022. PMID: 34600004 Review.
Cited by
-
Control of MXenes' electronic properties through termination and intercalation.Nat Commun. 2019 Jan 31;10(1):522. doi: 10.1038/s41467-018-08169-8. Nat Commun. 2019. PMID: 30705273 Free PMC article.
-
Double transition metal MXene (TixTa4-xC3) 2D materials as anodes for Li-ion batteries.Sci Rep. 2021 Jan 12;11(1):688. doi: 10.1038/s41598-020-79991-8. Sci Rep. 2021. PMID: 33436822 Free PMC article.
-
MXene: A Roadmap to Sustainable Energy Management, Synthesis Routes, Stabilization, and Economic Assessment.ACS Omega. 2024 Jul 18;9(30):32350-32393. doi: 10.1021/acsomega.4c04849. eCollection 2024 Jul 30. ACS Omega. 2024. PMID: 39100332 Free PMC article. Review.
-
In Situ High-Pressure X-ray Diffraction and Raman Spectroscopy Study of Ti3C2Tx MXene.Nanoscale Res Lett. 2018 Oct 29;13(1):343. doi: 10.1186/s11671-018-2746-4. Nanoscale Res Lett. 2018. PMID: 30374742 Free PMC article.
-
Enhanced Thermal Conductivity of Epoxy Composites Filled with 2D Transition Metal Carbides (MXenes) with Ultralow Loading.Sci Rep. 2019 Jun 24;9(1):9135. doi: 10.1038/s41598-019-45664-4. Sci Rep. 2019. PMID: 31235757 Free PMC article.
References
-
- Yu L. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055–3063 (2014). - PubMed
-
- Novoselov K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). - PubMed
-
- Balandin A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous