Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis
- PMID: 27304879
- DOI: 10.1002/anie.201603532
Molecular Engineering of Conjugated Polybenzothiadiazoles for Enhanced Hydrogen Production by Photosynthesis
Abstract
The search for metal-free organic photocatalysts for H2 production from water using visible light remains a key challenge. Reported herein is a molecular structural design of pure organic photocatalysts, derived from conjugated polybenzothiadiazoles, for photocatalytic H2 evolution using visible light. By alternating the substitution position of the electron-withdrawing benzothiadizole unit on the phenyl unit as a comonomer, various polymers with either one- or three-dimensional structures were synthesized and the effect of the molecular structure on their catalytic activity was investigated. Photocatalytic H2 evolution efficiencies up to 116 μmol h(-1) were observed by employing the linear polymer based on a phenyl-benzothiadiazole alternating main chain, with an apparent quantum yield (AQY) of 4.01 % at 420 nm using triethanolamine as the sacrificial agent.
Keywords: conjugation; hydrogen evolution; photocatalysis; polymers; semiconductors.
© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources