Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 May-Jun;33(3-4):130-74.
doi: 10.1080/02643294.2016.1147426. Epub 2016 Jun 16.

Toward a brain-based componential semantic representation

Affiliations

Toward a brain-based componential semantic representation

Jeffrey R Binder et al. Cogn Neuropsychol. 2016 May-Jun.

Abstract

Componential theories of lexical semantics assume that concepts can be represented by sets of features or attributes that are in some sense primitive or basic components of meaning. The binary features used in classical category and prototype theories are problematic in that these features are themselves complex concepts, leaving open the question of what constitutes a primitive feature. The present availability of brain imaging tools has enhanced interest in how concepts are represented in brains, and accumulating evidence supports the claim that these representations are at least partly "embodied" in the perception, action, and other modal neural systems through which concepts are experienced. In this study we explore the possibility of devising a componential model of semantic representation based entirely on such functional divisions in the human brain. We propose a basic set of approximately 65 experiential attributes based on neurobiological considerations, comprising sensory, motor, spatial, temporal, affective, social, and cognitive experiences. We provide normative data on the salience of each attribute for a large set of English nouns, verbs, and adjectives, and show how these attribute vectors distinguish a priori conceptual categories and capture semantic similarity. Robust quantitative differences between concrete object categories were observed across a large number of attribute dimensions. A within- versus between-category similarity metric showed much greater separation between categories than representations derived from distributional (latent semantic) analysis of text. Cluster analyses were used to explore the similarity structure in the data independent of a priori labels, revealing several novel category distinctions. We discuss how such a representation might deal with various longstanding problems in semantic theory, such as feature selection and weighting, representation of abstract concepts, effects of context on semantic retrieval, and conceptual combination. In contrast to componential models based on verbal features, the proposed representation systematically relates semantic content to large-scale brain networks and biologically plausible accounts of concept acquisition.

Keywords: Semantics; cognitive neuroscience; concept representation; embodied cognition.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources