Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016:134:69-96.
doi: 10.1016/bs.mcb.2015.12.004. Epub 2016 Feb 28.

Oligodendrocyte differentiation

Affiliations

Oligodendrocyte differentiation

E S Mathews et al. Methods Cell Biol. 2016.

Abstract

In the nervous system, axons transmit information in the form of electrical impulses over long distances. The speed of impulse conduction is enhanced by myelin, a lipid-rich membrane that wraps around axons. Myelin also is required for the long-term health of axons by providing metabolic support. Accordingly, myelin deficiencies are implicated in a wide range of neurodevelopmental and neuropsychiatric disorders, intellectual disabilities, and neurodegenerative conditions. Central nervous system myelin is formed by glial cells called oligodendrocytes. During development, oligodendrocyte precursor cells migrate from their origins to their target axons, extend long membrane processes that wrap axons, and produce the proteins and lipids that provide myelin membrane with its unique characteristics. Myelination is a dynamic process that involves intricate interactions between multiple cell types. Therefore, an in vivo myelination model, such as the zebrafish, which allows for live observation of cell dynamics and cell-to-cell interactions, is well suited for investigating oligodendrocyte development. Zebrafish offer several advantages to investigating myelination, including the use of transgenic reporter lines, live imaging, forward genetic screens, chemical screens, and reverse genetic approaches. This chapter will describe how these tools and approaches have provided new insights into the regulatory mechanisms that guide myelination.

Keywords: Glia; Myelin; Neural development; OPC; Oligodendrocyte; Zebrafish.

PubMed Disclaimer

LinkOut - more resources