Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Jun 1:7:765.
doi: 10.3389/fpls.2016.00765. eCollection 2016.

An Overview of CRISPR-Based Tools and Their Improvements: New Opportunities in Understanding Plant-Pathogen Interactions for Better Crop Protection

Affiliations
Review

An Overview of CRISPR-Based Tools and Their Improvements: New Opportunities in Understanding Plant-Pathogen Interactions for Better Crop Protection

Abdellah Barakate et al. Front Plant Sci. .

Abstract

Modern omics platforms have made the determination of susceptible/resistance genes feasible in any species generating huge numbers of potential targets for crop protection. However, the efforts to validate these targets have been hampered by the lack of a fast, precise, and efficient gene targeting system in plants. Now, the repurposing of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has solved this problem. CRISPR/Cas9 is the latest synthetic endonuclease that has revolutionized basic research by allowing facile genome editing in prokaryotes and eukaryotes. Gene knockout is now feasible at an unprecedented efficiency with the possibility of multiplexing several targets and even genome-wide mutagenesis screening. In a short time, this powerful tool has been engineered for an array of applications beyond gene editing. Here, we briefly describe the CRISPR/Cas9 system, its recent improvements and applications in gene manipulation and single DNA/RNA molecule analysis. We summarize a few recent tests targeting plant pathogens and discuss further potential applications in pest control and plant-pathogen interactions that will inform plant breeding for crop protection.

Keywords: CRISPR/Cas9; DNA double-stranded break; gene editing; homologous recombination; non-homologous end joining; plant–pathogen interactions.

PubMed Disclaimer

References

    1. Ali Z., Abulfaraj A., Idris A., Ali S., Tashkandi M., Mahfouz M. M. (2015). CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16:238 10.1186/s13059-015-0799-6 - DOI - PMC - PubMed
    1. Bai Y., Müller D. B., Srinivas G., Garrido-Oter R., Potthoff E., Rott M., et al. (2015). Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528 364–369. 10.1038/nature16192 - DOI - PubMed
    1. Baltes N. J., Hummel A. W., Konecna E., Cegan R., Bruns A. N., Bisaro D. M., et al. (2015). Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants 1:15145 10.1038/nplants.2015.145 - DOI - PMC - PubMed
    1. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 1709–1712. 10.1126/science.1138140 - DOI - PubMed
    1. Bassett A. R., Kong L., Liu J.-L. (2015). A genome-wide CRISPR library for high-throughput genetic screening in Drosophila cells. J. Genet. Genomics 42 301–309. 10.1016/j.jgg.2015.03.011 - DOI - PMC - PubMed

LinkOut - more resources