Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec;113(12):2577-2586.
doi: 10.1002/bit.26036. Epub 2016 Jun 30.

Molecular basis of substrate recognition and specificity revealed in family 12 glycoside hydrolases

Affiliations

Molecular basis of substrate recognition and specificity revealed in family 12 glycoside hydrolases

Felipe Calzado et al. Biotechnol Bioeng. 2016 Dec.

Abstract

Fungal GH12 enzymes are classified as xyloglucanases when they specifically target xyloglucans, or promiscuous endoglucanases when they exhibit catalytic activity against xyloglucan and β-glucan chains. Several structural and functional studies involving GH12 enzymes tried to explain the main patterns of xyloglucan activity, but what really determines xyloglucanase specificity remains elusive. Here, three fungal GH12 enzymes from Aspergillus clavatus (AclaXegA), A. zonatus (AspzoGH12), and A. terreus (AtEglD) were studied to unveil the molecular basis for substrate specificity. Using functional assays, site-directed mutagenesis, and molecular dynamics simulations, we demonstrated that three main regions are responsible for substrate selectivity: (i) the YSG group in loop 1; (ii) the SST group in loop 2; and (iii) loop A3-B3 and neighboring residues. Functional assays and sequence alignment showed that while AclaXegA is specific to xyloglucan, AtEglD cleaves β-glucan, and xyloglucan. However, AspzoGH12 was also shown to be promiscuous contrarily to a sequence alignment-based prediction. We find that residues Y111 and R93 in AtEglD harbor the substrate in an adequate orientation for hydrolysis in the catalytic cleft entrance and that residues Y19 in AclaXegA and Y30 in AspzoGH12 partially compensate the absence of the YSG segment, typically found in promiscuous enzymes. The results point out the multiple structural factors underlying the substrate specificity of GH12 enzymes. Biotechnol. Bioeng. 2016;113: 2577-2586. © 2016 Wiley Periodicals, Inc.

Keywords: Aspergillus; GH12; fungal glucanases; xyloglucan specific; xyloglucanases.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources