Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Apr;66(4):1824-37.
doi: 10.1152/jappl.1989.66.4.1824.

Effect of pressure assist on ventilation and respiratory mechanics in heavy exercise

Affiliations

Effect of pressure assist on ventilation and respiratory mechanics in heavy exercise

C G Gallagher et al. J Appl Physiol (1985). 1989 Apr.

Abstract

To assess the effect of the normal respiratory resistive load on ventilation (VE) and respiratory motor output during exercise, we studied the effect of flow-proportional pressure assist (PA) (2.2 cmH2O.l-1.s) on various ventilatory parameters during progressive exercise to maximum in six healthy young men. We also measured dynamic lung compliance (Cdyn) and lung resistance (RL) and calculated the time course of respiratory muscle pressure (Pmus) during the breath in the assisted and unassisted states at a sustained exercise level corresponding to 70-80% of the subject's maximum O2 consumption. Unlike helium breathing, resistive PA had no effect on VE or any of its subdivisions partly as the result of an offsetting increase in RL (0.78 cmH2O.1-1.s) and partly to a reduction in Pmus. These results indicate that the normal resistive load does not constrain ventilation during heavy exercise. Furthermore, the increase in exercise ventilation observed with helium breathing, which is associated with much smaller degrees of resistive unloading (ca. -0.6 cmH2O.l-1.s), is likely the result of factors other than respiratory muscle unloading. The pattern of Pmus during exercise with and without unloading indicates that the use of P0.1 as an index of respiratory motor output under these conditions may result in misleading conclusions.

PubMed Disclaimer

Publication types