Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 1;86(6):1516-1522.
doi: 10.1016/j.theriogenology.2016.05.010. Epub 2016 May 24.

Semen quality parameters as fertility predictors of water buffalo bull spermatozoa during low-breeding season

Affiliations

Semen quality parameters as fertility predictors of water buffalo bull spermatozoa during low-breeding season

Hussain Ahmed et al. Theriogenology. .

Abstract

The present study was carried out to assess various postthaw semen quality parameters for the prediction of fertility in buffalo bull during low-breeding season. Semen (30 ejaculates) was collected from five adult buffalo bulls with artificial vagina (42 °C). Sperm motility parameters, velocity distribution, motion kinematics, and subpopulations were analyzed by computer-aided sperm motion analyzer (CASA). Moreover, sperm visual motility, supravital plasma membrane integrity, viability/acrosome integrity, viability/mitochondrial transmembrane potential, DNA fragmentation/integrity, and morphology were analyzed by phase-contrast microscope, supravital hypoosmotic swelling test, Trypan blue/Giemsa staining, propidium iodide/"5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl carbocyanine iodide" (JC-1) fluorochromes, neutral comet assay/acridine orange assay and wet mount technique, respectively. Outcome of 528 inseminations was analyzed for in vivo fertility. Pearson's correlation coefficients revealed that sperm progressive motility (%), rapid velocity (%), average path velocity (μm/s), straight line velocity (μm/s), subpopulation one (most rapid, and progressive) of motile spermatozoa (%), supravital plasma membrane integrity (%), and viable spermatozoa with intact acrosome (%) were significantly correlated with in vivo fertility (r = 0.64, P < 0.01; r = 0.57, P < 0.01; r = 0.52, P < 0.01; r = 0.56, P < 0.01; r = 0.73, P < 0.001; r = 0.74, P < 0.001; r = 0.88, P < 0.001); whereas nonviable spermatozoa with damaged acrosome or low-mitochondrial transmembrane potential and comet length (μm) of neutral comet assay were negatively associated with in vivo fertility (r = -0.79, r = -0.75, P < 0.001, and r = -0.60, P < 0.05, respectively). Multiple regression analysis reported that combination of semen quality parameters as predictor of fertility were better (R(2) adjusted = 81.30%, P < 0.001) as compared with single parameter (R(2) adjusted = 50.20%, P < 0.007). It is concluded that assessment of CASA parameters and some other sperm structural and functional parameters, that is, integrity of plasma membrane and acrosome, and transmembrane potential of mitochondria were able to predict the in vivo fertility of water buffalo bull during low-breeding season.

Keywords: Buffalo bull; CASA; In vivo fertility; Mitochondrial transmembrane potential; Plasma membrane integrity; Prognostic value.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources