Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Jul 1;143(1):196-202.

Effect of lipopolysaccharide on C3 and C5 production by human lung cells

Affiliations
  • PMID: 2732467

Effect of lipopolysaccharide on C3 and C5 production by human lung cells

B L Rothman et al. J Immunol. .

Abstract

Although studies to date have demonstrated the ability of the monocyte/macrophage to produce C components in vitro, very few studies on C production by nonhepatic tissue cells have been reported. Recently, using 35S-methionine incorporation and immunoprecipitation techniques our laboratory has demonstrated the ability of tissue cells, i.e., the human lung type II pneumocyte (A549) and human lung fibroblast (WI-38), to synthesize and secrete a variety of early and terminal complement components, as well as several regulatory proteins in vitro, i.e., C1r, C1s, C4, C3, C5, C6, C7, C8, C9, factor B, factor H, factor I, and C1s inactivator. In our studies, we extended these observations by demonstrating the capability of LPS to modulate C3 production by A549 pneumocytes. Specifically, using a sensitive ELISA we demonstrated that A549 pneumocytes exposed to LPS induced an 80 to 180% increase in C3 levels when compared to untreated A549 cells. Interestingly, LPS had no effect on C5 production or total protein synthesis by A549 pneumocytes. In the case of the WI-38 fibroblast, LPS had no effect on 1) C3 production, 2) C5 production, or 3) total protein synthesis in vitro. These studies demonstrate that agents such as LPS have the potential to selectively regulate C production (i.e., C3) in individual lung cells in vitro, and suggests that in vivo LPS may alter the local tissue reservoir of C components during infection and lung injury, thus impacting on pulmonary inflammation and host defense.

PubMed Disclaimer

Publication types

LinkOut - more resources