Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jan:110:226-235.
doi: 10.1016/j.plaphy.2016.06.014. Epub 2016 Jun 15.

Physiological and biochemical response of plants to engineered NMs: Implications on future design

Affiliations
Review

Physiological and biochemical response of plants to engineered NMs: Implications on future design

Guadalupe de la Rosa et al. Plant Physiol Biochem. 2017 Jan.

Abstract

Engineered nanomaterials (ENMs) form the basis of a great number of commodities that are used in several areas including energy, coatings, electronics, medicine, chemicals and catalysts, among others. In addition, these materials are being explored for agricultural purposes. For this reason, the amount of ENMs present as nanowaste has significantly increased in the last few years, and it is expected that ENMs levels in the environment will increase even more in the future. Because plants form the basis of the food chain, they may also function as a point-of-entry of ENMs for other living systems. Understanding the interactions of ENMs with the plant system and their role in their potential accumulation in the food chain will provide knowledge that may serve as a decision-making framework for the future design of ENMs. The purpose of this paper was to provide an overview of the current knowledge on the transport and uptake of selected ENMs, including Carbon Based Nanomaterials (CBNMs) in plants, and the implication on plant exposure in terms of the effects at the macro, micro, and molecular level. We also discuss the interaction of ENMs with soil microorganisms. With this information, we suggest some directions on future design and areas where research needs to be strengthened. We also discuss the need for finding models that can predict the behavior of ENMs based on their chemical and thermodynamic nature, in that few efforts have been made within this context.

Keywords: Biomolecules; Carbon based nanomaterials; Engineered NPs/NMs; Physiology; Plants.

PubMed Disclaimer

MeSH terms

LinkOut - more resources