Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jun 22;11(6):e0157170.
doi: 10.1371/journal.pone.0157170. eCollection 2016.

Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region

Affiliations

Climate Impacts on Sea Turtle Breeding Phenology in Greece and Associated Foraging Habitats in the Wider Mediterranean Region

Samir H Patel et al. PLoS One. .

Abstract

Sea turtles are vulnerable to climate change impacts in both their terrestrial (nesting beach) and oceanic habitats. From 1982 to 2012, air and sea surface temperatures at major high use foraging and nesting regions (n = 5) of loggerhead turtles (Caretta caretta) nesting in Greece have steadily increased. Here, we update the established relationships between sea surface temperature and nesting data from Zakynthos (latitude: 37.7°N), a major nesting beach, while also expanding these analyses to include precipitation and air temperature and additional nesting data from two other key beaches in Greece: Kyparissia Bay (latitude: 37.3°N) and Rethymno, Crete (latitude: 35.4°N). We confirmed that nesting phenology at Zakynthos has continued to be impacted by breeding season temperature; however, temperature has no consistent relationship with nest numbers, which are declining on Zakynthos and Crete but increasing at Kyparissia. Then using statistically downscaled outputs of 14 climate models assessed by the Intergovernmental Panel on Climate Change (IPCC), we projected future shifts in nesting for these populations. Based on the climate models, we projected that temperature at the key foraging and breeding sites (Adriatic Sea, Aegean Sea, Crete, Gulf of Gabès and Zakynthos/Kyparissia Bay; overall latitudinal range: 33.0°-45.8°N) for loggerhead turtles nesting in Greece will rise by 3-5°C by 2100. Our calculations indicate that the projected rise in air and ocean temperature at Zakynthos could cause the nesting season in this major rookery to shift to an earlier date by as much as 50-74 days by 2100. Although an earlier onset of the nesting season may provide minor relief for nest success as temperatures rise, the overall climatic changes to the various important habitats will most likely have an overall negative impact on this population.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. Eastern Mediterranean Sea with indication of the 5 high use sites for loggerheads.
Fig 2
Fig 2. Climate model projections of mating period SST and Ta and corresponding projections of the day of first female emergence through the 21st century.
(A) Means of the projected changes in SST from 13 climate models (RCP 8.5) during the mating season for Crete and Zakynthos/Kyparissia. (B) Projections of the day of first female emergence through 2100 based on climate model estimations of the increase in SST during the mating season at Zakynthos Island. (C) Means of the projected changes in Ta from 14 atmospheric models (RCP 8.5) during the mating season for Crete and Zakynthos/Kyparissia. (D) Projections of the day of first female emergence through 2100 based on atmospheric model estimations on the increase in Ta during the mating season at Zakynthos Island.
Fig 3
Fig 3. Observed and future projections of mean annual SST for the five high use regions.
(A) Mean annual SST at the 5 high use areas for loggerheads in the Mediterranean. Solid lines are the linear trend lines (Adriatic R2 = 0.311; Aegean R2 = 0.560; Crete R2 = 0.674; Gabès R2 = 0.474; Zak/Kyp R2 = 0.393). (B) Means of the projected changes in annual SST from 13 climate models (RCP 8.5) for the 5 high use sites.
Fig 4
Fig 4. Relationship between number of nests per season and foraging site SST two years prior.
(A) Relationship between number of nests per season at Zakynthos (1984–2009) and the mean annual SST at the 5 foraging sites 2 years prior. Solid line is the linear trend line (R2 = 0.190). (B) Relationship between number of nests per season at Rethymno (1990–2004) and the mean annual SST at the foraging sites (Gulf of Gabès, Aegean Sea and Crete) 2 years prior. Solid line is the linear trend line (R2 = 0.572).
Fig 5
Fig 5. Means of the projected changes in precipitation rates from fourteen atmospheric models (RCP 8.5) during the mating season for Crete and Zakynthos/Kyparissia.

Similar articles

Cited by

References

    1. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 2013;3: 919–925.
    1. Bianchi CN, Morri C. Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar. Pollut. Bull. 2000;40: 367–376.
    1. Lejeusne C, Chevaldonne P, Pergent-Martini C, Boudouresque CF, Perez T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 2010;25: 250–260. 10.1016/j.tree.2009.10.009 - DOI - PubMed
    1. Casale P. Caretta caretta (Mediterranean subpopulation). The IUCN Red List of Threatened Species 2015: e.T83644804A83646294.
    1. Margaritoulis D, Panagopoulou A, Rees AF. Loggerhead nesting in Rethymno, Island of Crete, Greece: fifteen-year nesting data (1990–2004) indicate a declining population. Proceedings, Second Mediterranean Conference on Marine Turtles, 2009. pp. 116–119.