Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Jul 1;18(13):3118-21.
doi: 10.1021/acs.orglett.6b01298. Epub 2016 Jun 22.

Enantioselective Intermolecular C-H Functionalization of Allylic and Benzylic sp(3) C-H Bonds Using N-Sulfonyl-1,2,3-triazoles

Affiliations

Enantioselective Intermolecular C-H Functionalization of Allylic and Benzylic sp(3) C-H Bonds Using N-Sulfonyl-1,2,3-triazoles

Robert W Kubiak 2nd et al. Org Lett. .

Abstract

The enantioselective intermolecular sp(3) C-H functionalization at the allylic and benzylic positions was achieved using rhodium-catalyzed reactions with 4-phenyl-N-(methanesulfonyl)-1,2,3-triazole. The optimum dirhodium tetracarboxylate catalyst for these reactions was Rh2(S-NTTL)4. The rhodium-bound α-imino carbene intermediates preferentially reacted with tertiary over primary C-H bonds in good yields and moderate levels of enantioselectivity (66-82% ee). This work demonstrates that N-sulfonyltriazoles can be applied to the effective C-H functionalization at sp(3) C-H bonds of substrates containing additional functionality.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Substrate scope for benzylic C–H functionalization reaction.
Scheme 1
Scheme 1
Previous work on intermolecular C–H functionalization using N-sulfonyl-1,2,3-triazoles.
Scheme 2
Scheme 2
Reaction of triazole 1 with 4-methylanisole

References

    1. For an overview of recent advances in C–H functionalization, see: Davies HML, Morton D. J Org Chem. 2016;81:343–350.Farmer ME, Laforteza BN, Yu JQ. Bioorg Med Chem. 2014;22:4445–4452.Brückl T, Baxter RD, Ishihara Y, Baran PS. Acc Chem Res. 2012;45:826–839.Gutekunst WR, Baran PS. Chem Soc Rev. 2011;40:1976–1991.Newhouse T, Baran PS. Angew Chem Int Ed. 2011;50:3362–3374.

    1. For C–H functionalization for materials and natural products, see: McMurray L, O’Hara F, Gaunt MJ. Chem Soc Rev. 2011;40:1885–1898.Yamaguchi J, Yamaguchi AD, Itami K. Angew Chem Int Ed. 2012;51:8960–9009.Ku-ninobu Y, Sueki S. Synthesis. 2015;47:3823–3845.

    1. For a review on the use of C–H functionalization in medicinal chemistry, see: Cernak T, Dykstra KD, Tyagarajan S, Vachal P, Krska SW. Chem Soc Rev. 2016;45:546–576.

    1. For recent methods for C–H functionalization using Rh(I)-Rh(III) catalytic cycle review, see: Motevalli S, Sokeirik Y, Ghanem A. Eur J Org Chem. 2016;8:1459–1475.

    1. For reviews on C–H functionalization using donor-acceptor metalocarbenes, see: Davies HML, Manning JR. Nature. 2008;451:417–424.Davies HML, Morton D. Chem Soc Rev. 2011;40:1857–1869.Davies HML, Lian Y. Acc Chem Res. 2012;45:923–935.. For recent examples of C–H functionalization using donor-acceptor metalocarbenes, see: Qin C, Davies HML. J Am Chem Soc. 2014;136:9792.Guptill DM, Davies HML. J Am Chem Soc. 2014;136:17718–17721.Fu L, Guptill DM, Davies HML. J Am Chem Soc. 2016;138:5761–5764.Liao K, Negretti S, Musaev DG, Bacsa J, Davies HML. Nature. 2016;533:230–234.

Publication types

LinkOut - more resources